
IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017 483

DBSAFE—An Anomaly Detection System to
Protect Databases From Exfiltration Attempts

Asmaa Sallam, Elisa Bertino, Fellow, IEEE, Syed Rafiul Hussain,
David Landers, R. Michael Lefler, and Donald Steiner

Abstract—Attempts by insiders to exfiltrate data have become
a severe threat to the enterprise. Conventional data security tech-
niques, such as access control and encryption, must be augmented
with techniques to detect anomalies in data access that may indi-
cate exfiltration attempts. In this paper, we present the design and
evaluation of DBSAFE, a system to detect, alert on, and respond
to anomalies in database access designed specifically for relational
database management systems (DBMS). The system automatically
builds and maintains profiles of normal user and application
behavior, based on their interaction with the monitored database
during a training phase. The system then uses these profiles to
detect anomalous behavior that deviates from normality. Once
an anomaly is detected, the system uses predetermined policies
guiding automated and/or human response to the anomaly. The
DBSAFE architecture does not impose any restrictions on the type
of the monitored DBMS. Evaluation results indicate that the
proposed techniques are indeed effective in detecting anomalies.

Index Terms—Data engineering, data systems, information
security.

I. INTRODUCTION

DATA represent an extremely important asset for an orga-
nization. Exfiltration of confidential data such as military

secrets, sensitive healthcare or financial data, or intellectual
property poses one of the most severe threats in the case of
insider cyber-attacks. A malicious insider who has the proper
credentials to access the organization’s databases may, over
time, send data outside the organizational network through a
variety of channels, such as e-mail or crafted HTTP requests
that encapsulate data. Existing security tools primarily focus
on protecting the organization from outside attacks. Network-
level intrusion detection systems (IDS) monitor traffic patterns

Manuscript received November 30, 2014; revised April 10, 2015, June 18,
2015, and August 23, 2015; accepted September 26, 2015. Date of publication
October 26, 2015; date of current version June 26, 2017. This work was
supported by the Department of Homeland Security (DHS) Science and Tech-
nology Directorate, Homeland Security Advanced Research Projects Agency,
Cyber Security Division. The views expressed in this work are those of
the authors and do not necessarily reflect the official policy or position of
the Department of Homeland Security or Northrop Grumman Corporation.
NGIS-DSEA-14-01335.

A. Sallam, E. Bertino, and S. R. Hussain are with the Cyber Center, Center
for Education and Research in Information Assurance and Security (CERIAS),
West Lafayette, IN 47907 USA, and also with the Department of Computer
Science, Purdue University, West Lafayette, IN 47907 USA (e-mails: asallam@
purdue.edu; bertino@purdue.edu; hussain1@purdue.edu).

D. Landers, R. M. Lefler, and D. Steiner are with Northrop Grumman
Corporation, Falls Church, VA 22042 USA (e-mails: david.landers@ngc.com;
mike.lefler@ngc.com; donald.steiner@ngc.com).

Digital Object Identifier 10.1109/JSYST.2015.2487221

and attempt to infer anomalous behavior. While such tools
may be effective in protecting against external attacks, they are
less suitable when insiders, who have the proper credentials to
access data, are exfiltrating data.

The problem of securing databases from insider threats is
challenging, and its solution requires combining different tech-
niques [1]. One relevant technique is anomaly detection (AD)
by which the patterns of interaction between subjects (users or
applications) and the database are analyzed to detect anomalous
activity and changes in the access patterns that are indicative
of early signs of exfiltration. Since much of the critical data
to be safeguarded in government and corporate data stores
is currently held in relational databases, we focus on secur-
ing the contents of a relational database management system
(RDBMS). Our view is that an AD system that works at the
RDBMS layer (i.e., at the data source) is a promising approach
toward detecting data exfiltration by malicious insiders for the
following reasons: 1) RDBMS access is performed through
a standard, unique language (SQL) with well-understood and
well-documented semantics. It is, therefore, feasible to baseline
behavior at this layer, as opposed to doing so at the network or
operating system layer, where the diversity of mechanisms and
protocols for data transfer creates complexity that often con-
fuses conventional IDS. 2) Monitoring the potential disclosure
of confidential data is more effective when done as closely as
possible to the data source. Therefore, the DBMS layer is the
most suitable place for detecting early signs of data exfiltration.
3) The DBMS layer already has a thorough mechanism in
place for enforcing access control based on subject credentials.
Additional information about the subject requesting the data,
such as role, IP address, etc., is instrumental in detecting early
signs of exfiltration.

An AD system for monitoring database access needs to ad-
dress several challenges: 1) The system must be able to monitor
different commercial RDBMSs and integrate with logging tools
provided as part of commercially available security information
and event management (SIEM) systems. 2) It must have good
run-time performance in order to minimize the impact on query
processing times. 3) It must be able to monitor different types of
data access, e.g., from users, application programs, and internal
database maintenance, and variations in data access patterns,
including changes in the amount of retrieved data.

In this paper, we present the design and evaluation of
DBSAFE, a system to detect, alert on, and respond to anoma-
lies in database access designed specifically for RDBMS that
addresses the above challenges. A key feature of DBSAFE is

1937-9234 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

484 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 1. DBSAFE architecture provides a scalable system for learning patterns of behavior in database interactions and detecting and alerting on deviations from
these patterns.

the ability of profiling the selectivity of queries issued against
the database, and to detect changes with respect to the profiled
selectivity. By keeping track of the profiled selectivity, one can
detect major changes in the size of data retrieved by queries.
Such changes, as mentioned in [1], may be indications of data
misuse. In the following, we discuss the system architecture and
relevant technical issues related to creating profiles. We then
report results from an extensive evaluation carried out to assess
the first version of the DBSAFE prototype. We conclude by dis-
cussing related work and outlining on-going and future work.

II. DBSAFE ARCHITECTURE

The key idea underlying our AD methodology is to build
profiles of normal subject behavior when interacting with the
monitored database during a training phase. These profiles are
then used to detect anomalous behavior of these subjects. Once
an anomaly is detected, response actions must be returned for
possible automatic and/or human handling of the anomaly.

A first key issue in such a design is which subjects should
be monitored. In our design, we assume that the database uses
a role-based access control (RBAC) model. A role can be
thought of as a collection of data access permissions needed to
perform specific tasks. Under an RBAC model, users inherit the
authorizations of the roles to which they are assigned. DBSAFE
creates, manages, and monitors access pattern profiles corre-
sponding to roles, as opposed to individual users. Using roles
enables scaling the system to databases with large numbers
of users since managing a few roles (and, in the case of AD,
the profiles corresponding to the roles) is much more tractable
than managing many individual users. Since RBAC has long
been standardized in various commercial DBMS products, an
RBAC-based AD solution is practical in a real world envi-
ronment. In the concluding section, we outline on-going work
addressing cases where roles are not used.

A second key issue is how to represent the access patterns.
Very detailed access patterns may increase the accuracy of
detection but, on the other hand, may be very expensive to

process. To balance expressivity with efficiency, we decided to
represent the access profile in terms of some query features for
each query issued by each role. The query features that are ex-
tracted include: the command (e.g., SELECT, UPDATE, etc.),
the tables referenced in the query (e.g., in the projection clause
and the qualification clause of the query), and the columns
returned by the query (e.g., the columns in the projection
clause of the query). Note that this set of features characterizes
the syntax of the query. In many cases, however, it is also
critical to characterize the data returned by a query-anomalies
in the amount of data accessed by a user represent an important
indication of possible data theft. Therefore, we complement
such features with an indication of the “query selectivity,” that
is, the estimated percentage of data retrieved from the tables in
the database, as calculated by the database’s query optimizer.
Unlike other approaches based on inspecting the data once
retrieved by the query [13], our approach makes it possible to
detect anomalies in the volume of data retrieved by the query
before the query is executed, thus saving system resources, en-
hancing performance, and reducing response times in detecting
anomalies.

The DBSAFE architecture (see Fig. 1) directly supports
the two main phases of our AD methodology. It comprises a
profile creator component that uses audit logs as training data
to create role profiles and a detection engine that inspects each
query for anomalies based on these profiles. DBSAFE also
includes a mediator component that integrates with different
target RDBMS. As previously mentioned, access patterns are
obtained by analyzing the syntactical features of a query. Such
activity requires analyzing query parse trees and using the
schema of the target database being monitored. The mediator
extracts the required information from the target databases and
imports it into an internal database used by DBSAFE to process
the queries for analysis and for storing role profiles. This
internal database is currently implemented using PostgreSQL.

Finally, the query interceptor, also referred to as DB Activity
Monitor, gathers the actual queries being made to the target
database for inspection. We used IBM InfoSphere Guardium

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

SALLAM et al.: DBSAFE—AN ANOMALY DETECTION SYSTEM TO PROTECT DATABASES FROM EXFILTRATION ATTEMPTS 485

Data Activity Monitor [8] for this purpose. Currently, the inter-
ceptor is passive in the sense that it does not stop the queries
from being passed to the target database. We are currently
extending the system to support different actions to be taken
upon detecting anomalies. More details about this feature can
be found in Section VIII.

III. DATA REPRESENTATION

In this section, we describe the features extracted from the
input queries as well as their internal representation. Note that
this information applies to both the training queries and the
queries being analyzed during the AD phase. The format of the
SQL SELECT statement is as follows:

SELECT [DISTINCT] TARGET_LIST

FROM RELATION_LIST

WHERE QUALIFICATION.

Each command is internally represented by a basic data unit
containing a quadruplet of fields. For the sake of simplicity,
we represent a generic quadruplet using a relation of the form
Q(c, PR, PA, SR). The quadruplet contains detailed informa-
tion of a query in a log entry. c corresponds to the command
type issued by the user which can be either SELECT, INSERT,
UPDATE, or DELETE. PR corresponds to the projection re-
lation information and is represented as a binary array whose
length is the number of tables in the database. The entries in the
array corresponding to the tables accessed by the query have
the value 1; the others have the value 0. Entries in this array are
populated by data extracted from the RELATION_LIST in the
FROM clause of the parsed query. PA contains the projection
attribute information in the TARGET_LIST of the query. PA

is an array of arrays where each entry is a binary array corre-
sponding to a table in PR and whose length is the number of
attributes of the table. The length of PA is the number of tables
in the database. If an attribute is accessed in the projection list
of the query, its corresponding entry in PA will have value 1;
otherwise it will have value 0. SR is an array of length equal
to the number of tables in the target RDBMS. Each entry in SR

can have one of four values: “0” if the corresponding table is not
referenced in the query, “l” if more than two-third of the table
is estimated to appear in the result; “m” if more than one-third
and less than two-third of the table is estimated to appear in
the result; and “s” otherwise. Note that different partitionings
of the value estimates can easily be adopted. All components
of the quadruplet are obtained from the query parse-tree except
SR which is obtained from the query plan-tree. The query plan-
tree is an internal representation generated by the DBMS query
optimizer which indicates the steps into which the execution of
the query is decomposed. Examples of such steps are sequential
scan of a table, index-based scan of a table, and hash-based
join. Additional information on the plan-tree and its usage in
populating the values in SR can be found in Section V.

As an example, consider a database schema comprising the
Students (s_ID, s_deptID) and Departments (d_ID, d_name) re-
lations. Table Students contains IDs of students in column s_ID

TABLE I
EXAMPLE DATABASE

TABLE II
QUADRUPLET CONSTRUCTION

and a foreign key to Departments.d_ID in column s_deptID.
Table Departments contains information about students’ depart-
ments. Each record in this table has an ID and a name stored in
d_ID and d_name, respectively. Data stored in both tables are
shown in Table I. The corresponding quadruplet representations
of some SQL queries on this database are shown in Table II.

Note that compared with the profile format proposed in
our previous approach [10], the current profile format does
not include information about the attributes referenced in the
WHERE-clause of the query. It however includes information
about the query selectivity, that is, the SR component. The
reason why we decided to omit the information about the at-
tributes used in the WHERE-clause is that previous experiments
had shown that this information is not useful in enhancing the
accuracy of detection.

IV. PROFILE CREATION AND ANOMALY DETECTION

During the training phase, the profile creator component
of DBSAFE builds profiles for roles existing in the target
RDBMS. Data for training can be gathered using two differ-
ent methods. The first method is to record required training
information during the normal operation of the RDBMS, i.e.,
while users are submitting input queries to the RDBMS and
expecting to get query results. The profile creator sends each
input command to the parser to get its parse-tree. It then extracts
features from each parse-tree and uses them to update the
profile of the role corresponding to the user who issued this
command. The second method for training is to use audit log
files containing the previous activity of the database users. The
profile creator identifies SQL commands in the log and uses
them to create the profiles.

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

486 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

We address the problem of detecting the deviation of a user’s
behavior from normal as a classification problem for which we
use and evaluate two different types of classifiers: 1) a “Binary”
Classifier and 2) a Naive-Bayesian Classifier (NBC). Currently,
we assume that one role is activated per user. The formulation
of the problem and the techniques for using the classifiers are
detailed in the rest of this section.

A. Binary Classifier

Given an input query and the role of the user who issued this
query, the Binary Classifier’s task is to decide if such a query is
in the set of expected queries corresponding to this role as based
on the training data. During the AD training phase, we store in-
formation in role profiles that helps the classifier perform its job
during detection. The profile for a role contains a Boolean
value for every attribute in each table that indicates whether this
attribute has ever appeared in the projection list of a query in the
training log of users in this role. During detection, the classifier
checks that each of the features of the input query discussed
above has appeared in a training log corresponding to the
role’s profile.

B. Naive-Bayesian Classifier (NBC)

The NBC has proven to be effective in many practical
applications such as text classification and medical diagnosis
mainly because of the low computational cost for training and
detection that results from assuming that attributes considered
in classification are independent. Bayesian rules of probability
can then be applied with a decision rule to perform the classifi-
cation. We chose to apply the Maximum-A-Posteriori decision
rule (MAP) which is most commonly used with the NBC; the
MAP decision rule results in correct classification as long as
the correct class is more probable than all others. In the rest of
this section, we describe the general principles of the NBC and
show how it can be applied to our use case.

In supervised learning, a classifier is a function f that maps
input feature vectors x ∈ X to output class labels yi, where i ∈
1, . . . , C, X is the feature space, and the length of the vector
x is n. Our goal is to learn f from a labeled training set of N
input-output pairs. One way to solve this problem is to learn the
class-conditional density p(y|x) for each value of y and to learn
the class priors p(y). Bayes rule can then be applied to compute
the posterior p(y|x) = p(x, y)/p(x). Since the goal is to assign
a class to the new instance x, a decision rule is then applied.
By applying the MAP decision rule, x is assigned to the most
probable class, i.e., x is assigned to the class y that maximizes
p(y|x). Assume that the feature vector x = [a1, a2, . . . , an]; the
Bayesian and MAP rules can be applied as follows based on our
previous results [10]:

ymapα argmax
yj∈Y

p(yj)
∏

i

p(yj |ai). (1)

The NBC directly applies to our AD framework by con-
sidering the set of roles in the system as classes and the log
file quadruplets as observations. The number of attributes of
the system is |PR.P

T
A |+ |PR.S

T
R |+ 1. For example, if the

database has two tables and each table has three attributes, each

table may or may not be present in the query, and each attribute
may or may not be accessed in the table, so the number of pos-
sible combinations of the presence of the tables and attributes
is 2 ∗ 3, and each table can have one level of selectivity in the
query; the type of the query constitutes an additional attribute
of the query. The previous equation can be rewritten as

p(Q|rj) = p(rj)p(c|rj)
N∏

i=1

p
(
PR[i].PT

A [i]|rj
)

p
(
PR[i].ST

R [i]|rj
)

(2)
rmap = argmax

rj∈R
p(Q|rj). (3)

The probability that each role sends the input query is com-
puted using (2). In the equation, p(rj) is the prior probability,
that is, the probability that the role rj sends a query, and is
equal to the number of queries issued by rj and recorded in the
training log divided by the total number of queries in the log.
The rest of (2) constitutes the posterior probability that the role
rj issues the input query. p(c|rj) is the probability that a user
holding the role rj sends a query that has the same command
type as the input query. p(PR[i].PT

A [i]|rj) is the probability
that a user who belongs to role rj sends a query that projects
columns of table i that appear in the query. p(PR[i].ST

R [i]|rj) is
the probability that a similar user sends a query that accesses
table i and has the same selectivity as the input query. The
previous two probabilities are computed for each table in the
database and combined in the computation of the posterior
probability using multiplication (

∏N
i=1). The output of the

classifier (rmap) is computed using (3) and is equal to the role
that has the maximum probability of sending the input query;
R is the set of roles in the database. After rmap is identified
by the NBC, it is compared to the actual role of the user. If
they are identical, the query is considered normal, otherwise it
is considered anomalous. The procedure for computing the role
as estimated by the MAP rule is shown in Algorithm 1.

Since the per-table selectivity component of a query (SR)
is computed based on the optimizer’s output plan of the query
that is based on the statistics stored on the tables in the database,
when the statistics of a table change, the per-table selectivity of
the training queries that reference this table may also change
and should be updated accordingly. For this reason, the medi-
ator keeps data structures in order to be able to incrementally

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

SALLAM et al.: DBSAFE—AN ANOMALY DETECTION SYSTEM TO PROTECT DATABASES FROM EXFILTRATION ATTEMPTS 487

execute the required updates. The mediator has a hash-table that
maps the identifier of each table to the list of training queries
corresponding to this table. Each query has the ID of the role
of the user who submitted this query and the selectivity of the
table in this query. When the mediator receives new statistics
for a table, it checks these queries and sends a negative-update
message to the underlying AD Engine (ADE). This message
has the form (−, ri, tj , sk) which tells the ADE that the profile
of the role whose ID is ri should be updated by decrementing
C(tj , sk), that is, the number of queries in which the selectivity
of tj is sk. The mediator also sends similar messages for each
table in the query and adds the query to a redo-list which
contains queries that will be further processed by the mediator
as follows. The mediator requests the ADE to compute per-
table selectivities of tables in each of the queries in the list
and sends positive-update messages to the ADE as follows.
If a query qj issued by a user with role ri references a table
whose identifier is tk and the selectivity of this table in this
specific query is sjk, the mediator sends the ADE a message of
the form (+, ri, tk, sjk). The ADE responds to this message
by incrementing C(tk, sjk). Note that by using the positive
and negative updates, the ADE does not need to update other
features stored in the profiles, rather only the selectivity of
tables in queries in the redo-list.

C. Manual Revision of Existing Profiles

A critical issue in using classifiers is represented by the
problem of incomplete profile information after the training
phase because of insufficient training data. To address such
problem, DBSAFE provides an interface and a tool allowing
the administrator to manually add training information. This
interface is also useful for making changes in access patterns of
roles after the training is complete. When an attribute in a table
that has not been accessed during training appears in a query
during detection, a warning concerning this attribute is recorded
in the log of the database. By using the tool, the administrator
then can check if access to such attribute is anomalous or
normal and consequently modify the profiles.

D. Taxonomy of Query Anomalies

According to [13], query anomalies can be categorized into
three types: 1) different schema/different tuples, 2) similar
schema/different tuples, and 3) similar schema/similar tuples.
In this subsection, we review the query types and show the types
of anomalies that our AD techniques can identify.

A query is represented by its result set which has a schema,
that is, the identifiers of the columns that appear in the result, and
a set of tuples that verify the conditions expressed in the query.
Two queries are considered different if they have different result
schemas or if the set of tuples in the result of each query is
statistically different from each other. In the rest of this subsec-
tion, we define and give examples on each type of anomaly. All
examples follow the database schema shown in Table I.

1) Different Schema/Different Tuples: In this type of
anomaly, anomalous queries have result sets whose result
schema and tuples are different from those of normal queries.
An example is when the normal query is (SELECT ∗ from

students) and instead the query (SELECT ∗ from departments)
is issued. This anomaly typically occurs in masquerading at-
tacks. Our AD technique can detect this type of anomaly since
the quadruplet contains information on the range tables and
projection list.

2) Similar Schema/Different Tuples: Anomalous queries of
this type have result sets whose schemas are similar to the
result schemas of normal queries (that is, queries that are in the
profiles) but have result tuples that are statistically different. By
statistical difference we mean that if we computed statistical
measures on columns, e.g., mean and standard deviation on
integer columns, the resulting values of these measures would
be different. This category has two subtypes. The first (subtype
2a) includes queries that have similar syntax. An example of
this subtype is represented by the queries: (SELECT ∗ FROM
students WHERE d_deptID = 1) and (SELECT ∗ FROM stu-
dents WHERE d_deptID! = 1). The second subtype (2b) is
when the normal and anomalous queries have different syntax.
(SELECT ∗ FROM students where s_ID = 1) and (SELECT ∗
FROM students WHERE 1) are examples of such subtype. Data
harvesting is an attack in which this type of anomaly occurs.
Since the amount of data in the result of normal queries will be
different than that in the anomalous ones, our system can detect
anomalous queries of this type.

3) Similar Schema/Similar Tuples: This type is divided into
two subtypes. The first (subtype 3a) includes queries that
have different syntax and similar semantics. An example is
represented by the queries (SELECT ∗ FROM students where
s_ID = 1) and (SELECT ∗ from students where s_ID = 1 and
s_deptID IN (SELECT d_ID from departments)). The two
queries have similar semantics, i.e., user intent. Queries of this
subtype should not be considered anomalous and indeed they
would not be classified as such by our AD technique.

The second subtype (3b) is the case when the two queries
have different syntax and different semantics too. An example is
represented by the queries: (Select ∗ FROM students WHERE
s_ID < 100) and (SELECT ∗ FROM students). In a rare case,
all tuples stored in the table students will have sID < 100 and all
tuples will thus appear in the result. Therefore, the two queries
will be equivalent. DBSAFE cannot distinguish between the
two types of queries which is the correct decision.

V. QUERY SELECTIVITY

An important issue in the design of our system is how to ex-
tract information for characterizing the data retrieved by queries.
A critical requirement is that the query has to be analyzed
before being submitted to the target RDBMS. Therefore, an
approach based on analyzing the data returned by the query
[13] would not be suitable. To address this issue, we rely on
the query selectivity estimate provided by the query optimizer/
planner inherent in most commercial RDBMS. In the rest of this
section, we describe algorithms to estimate the selectivity, and
requirements at the mediator level to support such algorithms.

A. Selectivity Estimation

Since an RDBMS usually has many execution plans to
compute the answers to a query, the optimizer’s job is to find

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

488 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

a good plan for evaluating the query by ordering the query
operators and selecting the method for executing each operator.
For example, consider a query that accesses a single table.
The optimizer may choose to perform the projection operator
before applying the where-clause condition or it may choose to
apply the operators in the reverse order. As another example,
the optimizer can choose to execute the join operator according
to different algorithms, such as nested-loop join, merge-join,
and hash-join. The output of the optimizer is a tree-structured
plan for query execution; each node in the tree is an operator
and the input(s) to this operator is the result of the child nodes.
The choice of the optimizer on which plan to select is based
on the cost of the query plan which is usually measured as
the number of secondary storage page reads and writes. In the
course of estimating the cost of a query plan, the optimizer also
estimates the cost of each operator using statistics on tables
and columns stored in the database catalogs. For DBSAFE, we
adopt an approach that leverages the optimizer estimates on
query selectivity as follows. We process the plan-tree of the
query from top to bottom in a recursive manner in order to
determine per-table selectivities using the selectivity estimates
computed by the optimizer for the operators/internal nodes of
the plan-tree. Our algorithm assumes plan-trees that are output
of the PostgreSQL optimizer. As we process the plan-tree we
compute the cardinality of each node which is the number
of rows that are expected to be returned by the operation
represented by this node. Examples of such operations include
selection, projection, and join. The selectivity of a table that
is accessed in the query is set to the minimum cardinality of
the nodes in the path from the root of the tree to the leaf node
that references this table, as computed by our algorithm, divided
by the estimated table cardinality. Such cardinality is obtained
from the table statistics maintained in the system catalogs.

We differentiate between two types of nodes in the plan-tree:

1) Nodes with a single input.
A node that has one input represents a unary operator.

Four unary operators exist in PostgreSQL: Sequential-
Scan, Index-Scan, Materialize, and Hash operators. Input
to Sequential-Scan and Index-Scan operators is a raw
table, and they may have a filter condition. While parsing
the plan-tree, when we encounter one such node, we set
the cardinality of this node to the cardinality of the output
of the node. The cardinality is recorded in the query-plan
as part of the attributes of the node. The Materialize op-
erator creates an in-memory table for some intermediate
result to avoid reading a table or computing a result multi-
ple times. A Hash operator is the left child of a Hash-Join
operator and its function is to insert its input rows into
a hash-table as part of the Hash-Join algorithm. The se-
lectivity of both the Materialize and the Hash operators is
obtained from the node attributes and used further to com-
pute the minimum values across paths from the root to the
leaves that pass through this node as described earlier.

2) Nodes with two inputs.
These are join operators for which we differentiate

between two types as follows.

a) Equi-Join on a specific attribute.

An example of such node is the root of the plan-tree
of the query “Select ∗ from R1, R2 where R1.A =
R2.A”. We distinguish here between two cases:
i) R2.A is a foreign-key to the primary-key R1.A.

In this case, we assume that all rows of R2 will
show in the result. The number of null values in
R2.A are excluded if the join type is not a left
outer join. The cardinality of the node relative to
the subtree that references R1 is set to the number
of distinct values in R2.A, if this information is
present in the data dictionary and 1 otherwise. If
the join has a filter condition, the cardinality of the
node seen by the left and right subtree is set to the
output cardinality of the node.

ii) There is no such relationship between the columns.
In this case we differentiate between two cases:

A) The join is an inner join, and both R1.A and
R2.A have most common values (MCVs) statis-
tics recorded in the data dictionary.

For i ∈ {1, 2}, let ri be the number of rows of
Ri, ndi be the number of distinct values in Ri.A,
n_mcvi be the number of most common values in
Ri.A, n_d_mcvi be the number of distinct values
in the MCVs of Ri, n_nulli be the number of nulls
in Ri.A, and null_fi be the fraction of rows that
have nulls in Ri.A. All these values can be read
directly from the statistics of the columns stored
in the data dictionary of PostgreSQL.

To compute the node cardinality, first, we find the
common values in both arrays of MCVs of the
columns; let these values be vm and their number
benmi. The rest of the MCVs ofR1 can match any
value inR2 other than those in mcv2; the number of
distinct values in this portion of the table is n_d_
mcv1 − |vm|. The number of rows that would
match each of these values in R2 will be (r2 −
null_f2−n_mcv2)/(nd_2−n_d_mcv2). The rest
of the R1 rows can match any value in the non-
common values in R2 and the common values in
R2 other than vm; the number of distinct values in
this portion ofR1 isnd1−n_d_mcv1 and the num-
ber of rows that match each of these values inR2 is
(r2−null_f2−nm2)/(nd2−|vm|). Using the pre-
vious formulas, the cardinality of R2 in the result
can be computed if we assume that all the rows of
R1 will appear in the result. The same idea applies
if all rows inR2 are assumed to appear in the result.
We calculate the cardinalities of both tables given
the previous two assumptions; the assumption that
yields a higher cardinality value of the table will
be assumed true. The cardinality of the join node
relative to each subtree is computed accordingly.

B) The above case does not apply.
In this case, the selectivity of R1 and R2 in Q

is set to (1− null_f1) and (1− null_f2) respec-
tively. The null fraction is only excluded from R1,
R2 or both in the case the type of join is not left,
right or full, respectively.

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

SALLAM et al.: DBSAFE—AN ANOMALY DETECTION SYSTEM TO PROTECT DATABASES FROM EXFILTRATION ATTEMPTS 489

TABLE III
DESCRIPTION OF TRAINING DATA AND EVALUATION RUN

b) Other types of join.
In this case, all rows of both inputs are assumed to

appear in the result of this node and the cardinality
of the node used to compute the minimum of the left
table is the estimated number of rows in the output of
the left subtree of the join node. If the left node is a raw
table, this value is obtained from the data dictionary.
Similarly, the cardinality of the node as seen by the
right subtree is the estimated number of rows of the
right subtree of the node.

B. T-DBMSs Adapters

It is important to note that the ADE optimizer requires statis-
tics on the actual data in order to generate a suitable plan-tree
for the query. These statistics are generally only available on
the target RDBMS since this is the system managing the actual
data. PostgreSQL stores the most common values and height-
balanced histograms for each table column. For RDBMSs, like
Oracle, that adopt the same type of optimizer statistics, we can
directly use the statistics already existing in the Oracle data
dictionary rather than computing these values from scratch. For
SQL Server and MySQL, which do not store height-balanced
histograms, we need to compute this data using aggregate
functions. Therefore, DBSAFE needs to integrate an adapter
for each type of RDBMS to be supported. Currently, we have
developed adapters for Oracle and SQL Server.

VI. EXPERIMENTAL ACTIVITIES

DBSAFE was evaluated over several weeks in the summer
of 2014. The test database used the schema corresponding to a
real-world government medical database used to train doctors
and other personnel but populated with artificially generated
data. Table III summarizes the database used for evaluation, the
training log, and the evaluation run. In order to test the efficacy
of DBSAFE, our team emulated a government production sys-
tem, supplementing human security operators with automated
processes. One team, designated the Blue Team, was respon-
sible for monitoring the system and protecting sensitive data
using standard security techniques leveraging the DBSAFE
prototype software, while another team, designated the Red
Team, performed normal actions associated with the production
system. Select members of the Red Team, whose identities were
unknown to the Blue Team, attempted to exfiltrate sensitive
data periodically during the evaluation test run and/or to cover
up nefarious activities. A third team, designated the White

Team, monitored the evaluation process and gathered metrics
for performance analysis. Fig. 2 shows the test environment.

The Red Team was supplemented by two background work-
loads injected via the Apache JMeter load-testing tool. One
workload consisted entirely of benign database queries; those
are queries consistent with the tasks/activities of roles and thus
were used previously for training. The second workload con-
sisted entirely of queries previously developed by the evaluation
team to exfiltrate data. These exfiltration queries fell into two
categories. The first category consists of SELECT statements
which retrieve very sensitive columns of personally identifiable
information, such as social security number or passport number.
The second category consists of INSERT statements that create
new actors in the system. Creating new users is a typical activity
for malicious insiders and outsiders masquerading as insiders.

To provide a baseline, the system was run without DBSAFE
to determine how well Blue Team members could recognize ex-
filtration attempts without the automated support of DBSAFE.
The results were surprising: not a single true data exfiltration
attempt was recognized by any member of the Blue Team,
despite using a small set of SQL statements and lengthy time
between successive SQL statements.

Then we performed the actual evaluation run where duplicate
SQL statement streams were routed to both classifiers simulta-
neously. Table IV reports the results of this evaluation and shows
the accuracy of the Bayesian classifier and the Binary classifier.
The column named Bayesian classifier with warnings shows the
accuracy of the Bayesian classifier when queries that produc
ed a warning were considered anomalous. Remember that a
warning will be produced for each attribute referenced in the
query but has never appeared in the training log of the role of the
user, see Section IV-C. Table V contains the true positive rate
(TPR) and true negative rate (TNR) for both types of classifiers.

As can be seen, both classifiers performed well with respect
to true positives, at the cost of unacceptably high false posi-
tives. However, the NBC consistently outperformed the Binary
classifier. The reader may note that, though the same set of
SQL statements were sent to both classifiers, the two classifiers
reported different numbers of statements processed.

As shown in Table V, the true negative rates of the NBC (with
warnings) and the binary classifier are 68.36% and 29.53%,
respectively. Both classifiers have high rate of false positives
(Note that the false positive rate (FPR) is equal to 1—TNR);
the reason is that the training logs did not have enough data
about the columns that are usually retrieved by queries that
are considered normal. The result is that the system would flag
queries, that are considered benign by the Blue team member, as
anomalous. Therefore, it is important to have training data that
covers all the access patterns that are considered normal. To val-
idate that the reason for the false positives is the incompleteness
of the training data set and to better understand other relevant
factors, we ran several experiments using synthetic data. Our
experiments show that the cause for the false positives of the
NBC is a combination of insufficient training data, different
numbers of training records available for the different roles,
and common access patterns between the roles. The results
show that, for a database of 10 tables, with five columns per
table, and five roles, when the length of the training log of one

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

490 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 2. DBSAFE evaluation environment.

TABLE IV
EVALUATION RESULTS

TABLE V
TRUE POSITIVE AND TRUE NEGATIVE RATES

role is less than 10% of the length of the log of the role that
has the maximum number of training records, accompanied by
having more than 10% common queries between the roles, the
detection result is not accurate and queries from roles with short
logs will always be considered anomalous.

One solution to the problem of insufficient training data is
to support active learning techniques in which feedback from
the security administrator is incorporated in the system so that
it continuously learns about normal queries. In the future work
section, we discuss solutions to the problems of common role
access patterns and the variations in the length of the training
logs of the different roles.

Another observation on the results is that the Binary classifier
generates a higher number of false positives compared with the
NBC. The reason is that the former is not able to deal well
with the case in which the issued queries have some minor
variations with respect to the queries used for training. For
example, suppose that the training data contains, for one of
the roles in the database described in Section III, the query
“Select s_ID from students.” If a user who belongs to this
role issues the query “Select s_ID, s_deptID from students,”

the Binary classifier will classify this query as anomalous; on
the other hand, the NBC will classify it as a normal query as
long as this role has a higher probability of sending such query
compared with the other roles. Notice that, independently from
the specific classifier used, DBSAFE would also generate a
warning indicating that the query references an attribute that has
never been accessed by the issuing role in the training log. The
security administrator can then inspect the attribute identified
in the warning and let DBSAFE know whether the access to
this attribute by the role issuing the query is normal or has
to be considered an anomalous access. Therefore, subsequent
accesses to this attribute will be automatically classified by
DBSAFE according to such indication.

VII. RELATED WORK

Several approaches have been proposed to detect anomalies
in database system access. Spalka et al. [16] propose a misuse
detection system for databases. They compare two approaches
for performing AD. The first is to compute reference values
on monitored attributes. Periodically, values of attributes are
checked against reference values, and an anomaly is raised
if the difference exceeds a threshold set by the user. One
problem with this method is that it cannot be used to prevent
an attack before it occurs. Another method was proposed to
address this problem, namely, to store Δ-relations that capture
the changes performed on the monitored tables and periodically

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

SALLAM et al.: DBSAFE—AN ANOMALY DETECTION SYSTEM TO PROTECT DATABASES FROM EXFILTRATION ATTEMPTS 491

apply these changes on fictitious relations that are similar
to the monitored ones and then apply the first approach on
these fictitious relations to detect anomalies. Both approaches
require large processing overhead; they also focus on updates
and therefore are unable to detect anomalies in read accesses.
Failure to capture the behavior of different users is also a short-
coming in both approaches. Chung et al. propose DEMIDS,
a misuse detection system for relational database systems [4].
DEMIDS uses data in audit logs to derive profiles describing
typical patterns of access by database users. They introduced
the concept of frequent itemsets representing queries that are
frequently issued to the database. The proposed approach has
the same problem of not differentiating between the behaviors
of different users. The authors did not provide experimental
results to show the effectiveness of the proposed approach.

Other systems have been designed that work at the database
application level. For example, DIDAFIT [11] is a system for
detecting illegitimate database accesses by matching statements
against a known set of legitimate database transaction fin-
gerprints. DIDAFIT approach is based on summarizing SQL
queries into compact regular expressions. One problem in such
method is that the order of commands in the program is not
taken into consideration. DetAnom [7] overcomes the problem
in DIDAFIT by using concolic testing techniques to capture the
control flow and data flow of the program to assure the correct
order of SQL commands is preserved in the user transactions.
The use of data access correlations (read and write sets) has
been proposed in order to detect anomalies in one or multiple
consequent transactions [3], [6]. Since these approaches are de-
signed to work at the application level, they cannot differentiate
between the individual users/roles.

Approaches complementary to ours have been proposed [12],
[18], and [19] to determine the amount of knowledge that can
be inferred about database objects using dependency relation-
ships [12], [18], and [19]. This knowledge can be used by
insiders to broaden their knowledge about the database. Other
approaches [17] and [20] focus on analyzing network traffic to
detect malware that could lead to data exfiltration. All these
approaches can be combined with ours in order to strengthen
data protection from insiders.

Our current work is based on earlier ideas by Bertino et al.
[2], Kamra et al. [10], and Shebaro et al. [15]. This previous
work introduced the idea of profiling query syntax to detect
anomalies in queries but has several limitations, including
failing to characterize the amount of data returned by queries,
requiring modifications to the source code of the target DBMS,
and lack of integration with SIEM tools.

VIII. ON-GOING AND FUTURE WORK

We are currently working on extending the DBSAFE system
in different directions. The first is adding support for profiling
application programs, as in typical n-tier architectures, inter-
mediary application programs access the DBMS as opposed to
direct access by human users. A malicious insider may change
the code of the application program or submit malformed input
to cause a SQL injection attack in order to exfiltrate data.
However, creating query profiles for application programs is

challenging since specific transactions can only be issued by
the program according to its control and data flows. Moreover,
strings of queries in the same control flow sequence of the
program may be different if constants in the query strings are
computed based on input values. To address these issues, we
have developed an approach based on a combination of concrete
testing and symbolic execution techniques, referred to as con-
colic testing [7], [14]. This technique works in both the profile
creation and the detection phases. During the profile-creation
phase, we use concolic testing to build a profile for the program
in which the control structure of the program and locations
in the code where SQL queries are issued are recorded. The
profile also records expressions needed to compute constants in
the program in terms of input values. During program runtime
(the detection phase), the system uses this profile and the input
values to compose exact query strings that are expected to be
issued by the program. These strings are compared to the actual
ones sent by the program to the RDBMS; any difference is
considered anomalous. An interesting research direction, that
we plan to pursue, is to apply such approach to desktop appli-
cations, web applications and web services. We will also inves-
tigate how to use DBSAFE to detect spyware and other malware
that try to access data by exploiting data privileges of users.

A second critical extension is related to supporting AD when
roles are either not available or not used, even if they are
available. The latter case can arise since currently available
RDBMSs allow users to initially login using their user ID
and then choose a different role. Therefore, using a role is
not necessarily mandatory. Thus, it is also important to profile
individual user behavior. To address this issue, we are investi-
gating two complementary approaches. The first approach is to
create a role dedicated to each single user, in addition to the
normal DBMS roles. This special role would enable profiling
the access patterns of its corresponding user and comparing
current access patterns by the user against this profile. The
second approach is to cluster users that are characterized by
the same access patterns and create a role for this cluster. The
two approaches could complement each other in that the single-
user role approach would allow one to compare the activities
of a user against his/her past profiled activities. Upon detecting
anomalous queries by a user, one could check if such anomalies
occur for other users in the same cluster. If so, the change in
access patterns could be recorded as a normal event due to
changes in situations/tasks. Along similar lines, another impor-
tant function to include is to model and use different profiles for
different organizational situations, for example normal versus
emergency situations.

A third critical extension is related to training data. We
identified two major issues in the use of classification for role
prediction. The first issue is due to imbalanced training data
when there are significant differences between the cardinalities
of training records for different roles. Training models using
such imbalanced data will lead to sub-optimal predictive solu-
tions. To address this issue, we are extending DBSAFE with the
following approach. When the training phase ends, the mediator
checks the number of queries submitted by each role. If there is
a difference of more than α between the number of queries of
a role and the maximum, the mediator sends additional queries

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

492 IEEE SYSTEMS JOURNAL, VOL. 11, NO. 2, JUNE 2017

Fig. 3. Supporting response actions.

to the ADE by sampling (with replacement) the actual queries
submitted by the users of this role. A second issue related to
training data when using the NBC with the MAP rule is that
if users submit similar queries within different roles, the MAP
rule will not produce proper results if these same queries are
submitted during detection. The reason is that the probability
that any of these queries occurs will be biased toward the role
that submitted this query or part of it more frequently than the
other roles. Two techniques can be used to solve this problem.
The first is to identify the features that best represent each class/
role of the classifier and select only these features to be used in
classification. This technique is the well-known feature selec-
tion used for bootstrapping classifiers. Several feature selection
algorithms have been proposed. We plan to use the minimum
redundancy maximum relevance (mRMR) feature selection
algorithm [5]. This algorithm tries to find features that are the
most relevant or best represent the available classes, and at
the same time to omit features that give the same information
(entropy) as others, thereby reducing the redundancy among
selected features. The second technique that can be used to
solve the problem of common access patterns between roles is
to use a family of classifiers called the multi-labeling classifiers.
Using multi-labeling classification, in contrast to the NBC with
the MAP rule which relates each query to exactly one role, a
query can be related to several roles if it is a commonly sent by
the users of different roles.

A fourth critical extension is to support response actions for
handling detected anomalies. How to handle a specific anomaly
may depend on many factors. For example, if a table being
accessed contains very sensitive data, a strong response to the
anomaly would be to revoke the privileges corresponding to
anomalous accesses. In other cases, it may be desirable to take
no response actions in order not to tip the insider that he/she
has been detected. Our previous work [9] considers using a
response engine that automatically determines the action to
execute based on information about the anomaly and a response
policy base. This approach assumes that the target RDBMS is
PostgreSQL type and has an AD component. We are currently
extending our previous work to support the new architecture
that separates the AD task from the target RDBMS. Fig. 3
shows the flow of information to support response actions. The

response engine returns actions for responding to the anomaly
based on the query, the AD result, and contextual information
associated with the query. These actions are selected from a
set of predefined possible responses expressed in a declarative
language that we refer to as response policies.

Finally, future work includes designing AD techniques for
non-SQL DBMS and to use fine-grained provenance techniques
to monitor the use of data by users and applications once the
data have been retrieved.

ACKNOWLEDGMENT

The work reported in this paper has been funded in part
under contract by Department of Homeland Security (DHS)
Science and Technology Directorate, Homeland Security
Advanced Research Projects Agency, Cyber Security Division.
We would like to thank Lorenzo Bossi of Purdue University
for his work on re-engineering the DBSAFE Proof of Con-
cept, Dorota Woodbury, Dave Lafave, Catherine LaShure, and
Mark Pumphrey at Northrop Grumman for their work on
extending and integrating the DBSAFE prototype with com-
mercial systems, and our numerous colleagues at Northrop
Grumman for setting up and participating in the evaluation and
testing exercises.

REFERENCES

[1] E. Bertino, “Data protection from insider threats,” Synthesis Lectures
Data Manage., vol. 4, no. 4, pp. 1–91, 2012.

[2] E. Bertino, A. Kamra, E. Terzi, and A. Vakali, “Intrusion detection in rbac-
administered databases,” in Proc. 21st ACSAC, Washington, DC, USA,
2005, pp. 170–182.

[3] M. Chagarlamudi, B. Panda, and Y. Hu, “Insider threat in database sys-
tems: Preventing malicious users’ activities in databases,” in Proc. 6th
Int. Conf. ITNG, Apr. 2009, pp. 1616–1620.

[4] C. Y. Chung, M. Gertz, and K. Levitt, “Integrity and internal control infor-
mation systems,” in DEMIDS: A Misuse Detection System for Database
Systems. Norwell, MA, USA: Kluwer, 2000, pp. 159–178.

[5] G. Gulgezen, Z. Cataltepe, and L. Yu, “Stable and accurate feature selec-
tion,” in Machine Learning and Knowledge Discovery in Databases, ser.
Lecture Notes in Computer Science, vol. 5781, W. Buntine, M. Grobelnik,
D. Mladeni, and J. Shawe-Taylor, Ed. Berlin, Germany: Springer-Verlag,
2009, pp. 455–468.

[6] Y. Hu and B. Panda, “Identification of malicious transactions in data-
base systems,” in Proc. 7th Int. Database Eng. Appl. Symp., Jul. 2003,
pp. 329–335.

[7] S. R. Hussain, A. M. Sallam, and E. Bertino, “Detanom: Detecting anoma-
lous database transactions by insiders,” in Proc. 5th ACM CODASPY ,
New York, NY, USA, 2015, pp. 25–35.

[8] IBM, IBM—InfoSphere Guardium Data Activity Monitor. Accessed:
May 1, 2015. [Online]. Available: http://www-03.ibm.com/software/
products/en/infosphere-guardium-data-activity-monitor

[9] A. Kamra and E. Bertino, “Design and implementation of an intrusion
response system for relational databases,” IEEE Trans. Knowl. Data Eng.,
vol. 23, no. 6, pp. 875–888, Jun. 2011.

[10] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous access patterns
in relational databases,” Int. J. Very Large Data Bases, vol. 17, no. 5,
pp. 1063–1077, Aug. 2008.

[11] S. Lee, W. Low, and P. Wong, “Learning fingerprints for a database intru-
sion detection system,” in Computer Security ESORICS 2002, ser. Lecture
Notes in Computer Science, vol. 2502, D. Gollmann, G. Karjoth, and
M. Waidner, Eds. Berlin, Germany: Springer-Verlag, 2002, pp.
264–279.

[12] W. Li, B. Panda, and Q. Yaseen, “Mitigating insider threat on database
integrity” in Information Systems Security, ser. Lecture Notes in Computer
Science, vol. 7671, V. Venkatakrishnan and D. Goswami, Eds. Berlin,
Germany: Springer-Verlag, 2012, pp. 223–237.

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

SALLAM et al.: DBSAFE—AN ANOMALY DETECTION SYSTEM TO PROTECT DATABASES FROM EXFILTRATION ATTEMPTS 493

[13] S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upadhyaya, “A data-
centric approach to insider attack detection in database systems,” in Proc.
13th Int. Conf. RAID, Berlin, Germany, 2010, pp. 382–401.

[14] A. Sallam and E. Bertino, “Poster: Protecting against data exfiltration
insider attacks through application programs,” in Proc. ACM SIGSAC
Conf. CCS, New York, NY, USA, 2014, pp. 1493–1495.

[15] B. Shebaro, A. Sallam, A. Kamra, and E. Bertino, “Postgresql anomalous
query detector,” in Proc. 16th Int. Conf. EDBT, New York, NY, USA,
2013, pp. 741–744.

[16] A. Spalka and J. Lehnhardt, “A comprehensive approach to anomaly
detection in relational databases,” in Data and Applications Security
XIX, ser. Lecture Notes in Computer Science, vol. 3654, S. Jajodia
and D. Wijesekera, Eds. Berlin, Germany: Springer-Verlag, 2005,
pp. 207–221.

[17] H. Xiong, P. Malhotra, D. Stefan, C. Wu, and D. Yao, “User-assisted host-
based detection of outbound malware traffic,” in Proc. 11th ICICS, Berlin,
Germany, 2009, pp. 293–307.

[18] Q. Yaseen and B. Panda, “Knowledge acquisition and insider threat pre-
diction in relational database systems,” in Proc. Int. Conf. CSE, Aug. 2009,
vol. 3, pp. 450–455.

[19] Q. Yaseen and B. Panda, “Predicting and preventing insider threat in
relational database systems,” in Information Security Theory and Prac-
tices. Security and Privacy of Pervasive Systems and Smart Devices, ser.
Lecture Notes in Computer Science, vol. 6033, P. Samarati, M. Tunstall,
J. Posegga, K. Markantonakis, and D. Sauveron, Eds. Berlin, Germany:
Springer-Verlag, 2010, pp. 368–383.

[20] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy
malware activities with traffic causality and scalable triggering relation
discovery,” in Proc. 9th ACM Symp. Inf., ASIA CCS, New York, NY, USA,
2014, pp. 39–50.

Asmaa Sallam is pursuing the Ph.D. degree at the
department of computer science at Purdue Univer-
sity, West Lafayette, IN, USA.

Her research interests are on data protection from
insider threat and data management systems.

Elisa Bertino (SM’83–F’02) received the Ph.D. de-
gree in computer science from the University of Pisa,
Pisa, Italy.

She is a Professor of computer science at Purdue
University, and serves as Research Director of the
Center for Education and Research in Information
Assurance and Security (CERIAS) and Interim Di-
rector of Cyber Center (Discovery Park). Previously,
she was a Faculty Member and Department Head at
the Department of Computer Science and Commu-
nication of the University of Milan. She is currently

serving as EiC of IEEE Transactions on Dependable and Secure Computing.
She is a Fellow of the ACM.

She received the 2002 IEEE Computer Society Technical Achievement
Award for outstanding contributions to database systems and database security
and advanced data management systems and the 2005 IEEE Computer Society
Tsutomu Kanai Award for pioneering and innovative research contributions to
secure distributed systems.

Syed Rafiul Hussain is pursuing the Ph.D. degree
at the department of computer science at Purdue
University, West Lafayette, IN, USA.

His research interests are on data protection from
insider threat and provenance techniques for sensor
networks.

David Landers received the B.S. degree in physics
from Florida Institute of Technology, Melbourne,
in 1995.

He is a Software Engineer in the Information
Systems Sector of Northrop Grumman Corporation
in Northrop Grumman Corporation. From 1995 to
2008, he was a Database Administrator and Soft-
ware Engineer with L-3 Communications Inc. Since
2008 he has been a Database Administrator, Systems
Architect, Test Engineer, and Software Engineer at
Northrop Grumman. His current fields of interest are

data warehouse design and database security.

R. Michael Lefler received the B.S. degree in math-
ematics and M.S. degree in computer science from
University of Illinois, Urbana, IL, USA.

He is a Computer Systems Architect and Tech-
nical Fellow of the Enterprise Shared Services
organization of Northrop Grumman Corporation,
where he is responsible for predictive analysis ap-
plied to the Insider Threat. At Northrop Grumman
he has architected advanced information system so-
lutions in the intelligence community, DoD, law
enforcement, and healthcare and served as Principal

Investigator on numerous R&D projects in areas such as advanced healthcare,
database performance prediction, and information assurance. From mid-1996
through December 2001 Mr. Lefler was a voting member of the American
National Standards Institute (ANSI) INCITS H2 Committee.

Donald Steiner received the Ph.D. degree in mathe-
matics from Iowa State University, Ames.

He is the Principal Technologist and a Techni-
cal Fellow of the Information Systems Sector of
Northrop Grumman Corporation. He is Principal
Investigator for research and development projects
involving data analytics, cybersecurity, and cloud
computing. He manages the Northrop Grumman
Cybersecurity Research Consortium, a collaboration
with Carnegie Mellon University, MIT, Purdue Uni-
versity, and the University of Southern California.

Previously, he was CTO of Quantum Leap Innovations and Co-Founder and
Chief Scientist of WebV2, Inc., a spin-off of Siemens AG. His research inter-
ests include artificial intelligence, multi-agent systems, data analytics, cloud
computing, and cyber security.

Authorized licensed use limited to: Purdue University. Downloaded on April 07,2022 at 08:07:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

