
SAAMAN: Scalable Address Autoconfiguration
in Mobile Ad Hoc Networks

Syed Rafiul Hussain • Subrata Saha •

Ashikur Rahman

Published online: 19 November 2010

� Springer Science+Business Media, LLC 2010

Abstract Address autoconfiguration is one of the fundamental issues in mobile ad

hoc networks (MANET). A node must need some form of identity before partici-

pating in any sort of communication. So each host in a MANET needs to be

uniquely addressed so that the packets can be relayed hop-by-hop and delivered

ultimately to the desired destination. Moreover, nodes in the MANET are free to

move and organize themselves in an arbitrary fashion. Therefore any fixed infra-

structure based solution for assigning identity (i.e. IP address) is not directly

applicable to MANET. Under this infrastructureless and sporadic nature of the

mobile nodes, several protocols of address autoconfiguration in the mobile ad hoc

networks (MANET) have been proposed. Although some of these protocols perform

decently in sparse and small networks, but exhibit poor performance (e.g., single

point of failure, storage limitation, large protocol overhead and so on) when the

network is either dense or very large. In this paper, we propose an efficient and

scalable address autoconfiguration protocol that automatically configures a network

A preliminary version [1] of this paper has been published in International Conference on Ad-Hoc,

Mobile and Wireless Networks (ADHOC-NOW 2009).

S. R. Hussain (&) � S. Saha � A. Rahman

Department of Computer Science and Engineering, Bangladesh University of Engineering &

Technology, Dhaka, Bangladesh

e-mail: rafiulhussain@csebuet.org

S. Saha

e-mail: subrata@csebuet.org

A. Rahman

e-mail: ashikur@cse.buet.ac.bd

S. R. Hussain

Ahsanullah University of Science & Technology, Dhaka, Bangladesh

S. Saha

Tiger IT Bangladesh Limited, Dhaka, Bangladesh

123

J Netw Syst Manage (2011) 19:394–426

DOI 10.1007/s10922-010-9187-4

by assigning unique IP addresses to all nodes with a very low overhead and minimal

cost. Evenly distributed Duplicate-IP address Detection Servers are used to ensure

the uniqueness of an IP address during IP address assignment session. In contrast to

some other solutions, the proposed protocol does not exhibit any problems per-

taining to leader election or centralized server-based solutions. Furthermore, grid

based hierarchy is used for efficient geographic forwarding as well as for selecting

Duplicate-IP address Detection Servers. Through simulation results we demonstrate

scalability, robustness, low latency, fault tolerance and some other important

aspects of our protocol.

Keywords Duplicate address detection (DAD) � Duplicate-IP detection server

(DDS) � DDS selection principle (DSP) � Geographic forwarding � IP address

autoconfiguration � MANET

1 Introduction

A mobile ad hoc network (MANET) consists of a set of mobile transceivers

communicating via single or multi-hop wireless links and functions without any

predefined infrastructure. A node equipped with such a transceiver can join or leave

the MANET at any time. In such infrastructureless environment, some of the

notable challenging issues are routing, power consumption, security and network

configuration. Among them network configuration includes IP address autoconfig-

uration, DNS server setup etc. IP address autoconfiguration is an inevitable issue not

only in mobile ad hoc networks but also in all types of networks. Nevertheless, with

the view of spreading quickly and easily (i.e., like a plug and play device)

in situations like battlefields, disastrous areas etc., where there is no possibility and

time to set up a fixed infrastructure, a very sophisticated issue like large scale IP
address autoconfiguration in MANET should be focused with added emphasis.

The address autoconfiguration can be defined as a task of automatically assigning

conflict-free unique IP address to every constituent node in the MANET without any

manual intervention or without using any centralized DHCP [2] server. Upon arrival

of a new node in a network, a unique conflict-free IP address must be assigned

before it can participate in data communication. The IP address autoconfiguration

protocol possess some of the characteristics given below:

1. The IP address assignment scheme must be distributed so that there is no single

point of failure or bottleneck.

2. The assignment process should be quick enough since a node cannot participate

in communication until it is configured with a unique IP address.

3. Autoconfiguration process should be scalable to accommodate a large number

of nodes.

4. The protocol should be able to detect duplicate addresses when merging of two

or more networks occurs and resolve quickly to avoid inappropriate routing.

5. It should handle some important aspects like address reclamation, address

leakage, presence of multiple nodes at the time of network initialization etc.

J Netw Syst Manage (2011) 19:394–426 395

123

Although there exists many solutions for IP management in traditional wired

networks but those are not directly applicable in MANET environment. In wired

network, a static IP address can be easily assigned by the network administrator to

each host in the network, but in MANET, hosts join and leave the network

dynamically making the manual IP address assignment inapplicable and imprac-

tical. Also a dynamic host configuration protocol (DHCP) can be used to

dynamically assign IP addresses in traditional networks. However the caveat of

this DHCP protocol is its dependency on some preconfigured hosts running as

DHCP servers and assigning dynamic IP addresses to other hosts. MANET

environment is assumed to work in a distributed fashion without any servers.

Another protocol known as Stateless Address Auto-configuration (SAA) [3, 4] is

used in the Internet for dynamically assigning IP addresses. Although in this

protocol each host configures minimally required IP addresses in a distributed

manner but the routers need to assign a globally unique address prefix within the

same link of user nodes. SAA can not be directly applied to MANET because of its

dependency on some special network elements such as router which is absent in

MANET. Moreover, the topology changes frequently in MANET which makes it

impossible to assign any globally unique prefix.

Prior works on autoconfiguration in MANET can be classified into two major

groups: stateless and stateful address autoconfiguration. Nevertheless, a mixture of

these two classes, called hybrid autoconfiguration, is also possible. In stateless
autoconfiguration [5, 6], nodes in MANET do not store any IP address allocation

information. A newly joined node randomly picks up an IP address and runs an

algorithm called Duplicate Address Detection (DAD) algorithm [6] within the entire

network to ensure that the chosen IP address is unique. If a conflict is found by a

node with same IP address, the same process is repeated until a unique IP address is

found. So, stateless autoconfiguration is also called conflict-detection address

assignment scheme which adopts ‘trial and error’ policy to allocate a unique IP

address.

On the contrary, in stateful autoconfiguration (e.g., [7] and [8]) a node acquires

its unique IP address either from a centralized node or from one of the nodes from a

set of distributed servers. The centralized nodes or the distributed servers are

equipped with a pool of disjoint IP address blocks and keep records of all the IP

addresses they have already allocated along with a list of available IP addresses. In

this way, a unique IP address can be chosen without conducting any DAD and hence

no conflict occurs. For this reason it is also called conflict-free autoconfiguration

protocol. One major drawback of this class of protocols is nodes need to

synchronize with each other in order to maintain the consistency of the IP address

allocation information and to avoid duplicity.

Both stateful and stateless protocols provide limited scalability. In stateless

protocols, every time a new node acquires an IP address, it floods the entire network

with overwhelming DAD broadcast messages. With the increased network size, this

kind of message broadcast is very costly and hinders scalability. One of the simple

but naive non-scalable solutions for autoconfiguration is as follows: suppose there is

a special node located in a well known position within the network which stores all

the IP addresses assigned in the network. Let us call this special node a Central

396 J Netw Syst Manage (2011) 19:394–426

123

Duplicate-IP Detection Server (CDDS). Any new node requiring an IP address picks

up a random IP address and sends a query to this special node (i.e., CDDS) to verify

whether this randomly chosen IP address is already chosen by some other node. If

this CDDS replies positively (i.e., no node has chosen this IP address so far) then the

node may safely assign this IP address to itself. Otherwise it discards this IP address,

chooses another IP address randomly and repeats the same procedure. As this

special node is located in a position which is previously known to all other nodes in

the network, sending such query using geographic forwarding is easy. The problems

with this approach are:

1. A single point of failure: Because there is only one special node which stores all

the IP addresses, if this special node fails, so does the entire autoconfiguration

scheme!

2. Large database: This single node needs to maintain a large database. With the

increase of network sizes, the size of this IP address database also grows.

3. Traffic volume: This single special node would have to handle all Duplicate-IP

address detection queries.

4. Distant centralized database: This single node cannot be close to all nodes.

This will create a variable processing delay for different nodes located on

different parts of the network.

Instead of such a naive centralized solution, we present a distributed approach of

IP address autoconfiguration, dubbed as SAAMAN, to automatically configure a

large scale MANET. The protocol works with the help of a special service offered

by all the nodes called Duplicate-IP address Detection Service. Any node offering

this service is called a Duplicate-IP address Detection Server (DDS in short).

Instead of storing all the IP addresses in a central database belonging to a special

node, here we distribute this database almost uniformly to all the nodes present in

the network. Without any predesignation or pre-agreement, a node can act as a DDS

for other nodes by keeping the information of position, speed and identity (i.e., IP

address) of other nodes. Also, for a single node, a group of nodes simultaneously act

as DDSs. With the help of a very simple principle (described in Sect. 3.3) the DDSs

are efficiently selected for a particular node. This distributed duplicate-IP detection

mechanism, not being centralized, eliminates the risk of single point of failure and

yields duplicate-IP detection facility by copying the knowledge of a node at several

DDSs. Also different subset of nodes become DDSs for different nodes which

ensure load balancing effectively. Every node maintains a table called Duplicate-IP

Detection Table (DDT). To facilitate scalability, a node’s DDT contains information

of only those nodes for which it acts as a DDS.

The paper is organized as follows. Section 2 describes the related works already

done along this direction. Section 3 covers some preliminary concepts and

definitions for better understanding of the proposed protocol. Section 4 describes the

basic autoconfiguration scheme that we propose. A thorough extensive analysis of

different critical problems and/or issues along with their tentative solutions are also

presented in Sect. 5. Rigorous experimental results showing the effectiveness and

robustness of the proposed autoconfiguration protocol are presented in Sect. 6. An

analytical comparison of our proposed scheme with other DAD based protocols is

J Netw Syst Manage (2011) 19:394–426 397

123

demonstrated in Sect. 7. Section 8 presents directions for future works and finally

Sect. 9 concludes the paper by summarizing special features towards efficiency and

scalability of the proposed protocol.

2 Related Works

Even though scalability is a much sophisticated issue for address autoconfiguration

in MANET, a very few works e.g., [9] and [10] in the current MANET literature

address this issue seriously. The first approach to IP address autoconfiguration

protocol for MANET, proposed by Perkins et al. [6], belongs to the category of

stateless autoconfiguration. In this protocol the address pool of 169.254/16 is used

by the MANET and is divided into 2 sets: temporary address pool (169.254.0.1–

169.254.7.255) and permanent address pool (169.254.8.0–169.254.255.254). A

newly joined node first randomly chooses a temporary address from the temporary

address pool and uses it as its source address to send a query for Duplicate Address

Detection (DAD). The query includes a randomly picked IP address from the

permanent address pool and is flooded throughout the network. If no other node in

the network is assigned with the address mentioned in the query, then no reply

comes back. This causes a timer at that newly joined node to expire and thereby that

address can be assigned accurately to that node as a permanent address. On the other

hand, if there is a conflict, a reply message from the conflicting node is sent. Then,

the newly joined node has to rescind that chosen IP address and again randomly

picks another IP address from the permanent address pool. The procedure is

repeated again until the node is correctly assigned with an available IP address.

However, there are some drawbacks of this protocol. This scheme does not describe

what will happen if multiple nodes concurrently select the same temporary address

from the temporary address pool (1–2,047) during assignment session. And most

importantly, the duplicate address detection procedure described in their scheme

does not scale well as the network size grows. Furthermore, this proposal does not

handle network partitions and as a result it does not fit well for ad hoc networks.

However, Weak DAD based protocol proposed by Vaidya [11] ensures no

erroneous routing in spite of having two nodes the same IP address. This is

accomplished by adding a unique key to each address to ensure the uniqueness. The

key is of arbitrary length and is chosen once by each node either randomly or based

on a Universal Unique ID. It incorporates this key in the routing messages. A node

detects conflict if it receives two packets of same address, but different keys.

Though there is infinitesimal probability that two nodes pick up same address and

the same key, still it may happen and hence conflicts occur. But, the probability of

conflict decreases with increasing key length. Since key length is not constant, it

incurs extra overhead in routing packets for including the information of key length

in Packet Header. Thus there is a trade-off between routing protocol overhead and

probability of detecting conflicts.

The solution of Zeroconf working group [5] also uses DAD algorithm. It assigns

every node a unique link-local address within the range 169.254.1.0–

169.254.254.255. After selecting an address, the host checks to determine if the

398 J Netw Syst Manage (2011) 19:394–426

123

address is already used by any other node. This approach focuses on wired networks

and ensures link-local uniqueness of the address. It is required that every node in the

network to be within the communication range of every other node in the network.

For this reason the solution is incompatible to MANET as MANET does support

multi-hop communication along with single-hop. To extend the solution to

MANETs, DAD message(s) will have to be flooded throughout the network. Park

et al. [12] propose a solution using IPv6 site-local address which incorporates a

problem regarding subnet IDs. It uses Neighbor Discovery Protocol (NDP)

messages for DAD and floods this forwarded NDP messages within the entire

network which obviously introduces handsome overhead, message loss, network

congestion and so on.

IPv6 stateless autoconfiguration [4] uses IPv6 instead of IPv4 addressing

mechanism. So, addressing process is different from that of IPv4 based stateless

autoconfiguration protocol. An IPv6 node has several addresses per interface (e.g.,

link local addresses and global addresses) and IPv6 address has a prefix and a suffix.

A router broadcasts its address prefix intermittently to all nodes in its subnets. So,

when a new node joins the network it receives the prefix from its edge router. After

receiving that prefix, that newly joined node forms a global address using this prefix

and a suffix which is obtained from the MAC address. It then uses its link local

addresses as its source address on temporary basis to conduct a DAD on the entire

Local Area Network (LAN) to check the uniqueness of its formed global address. If

any other node in that LAN is already configured with that requested global address,

it will negatively respond to that newly joined node. On the other hand, if no

negative reply comes before the timeout, the requesting node assigns that global

address as its permanent address. However, one of the drawbacks of this solution is:

it is not guaranteed that all nodes and interfaces contain unique IEEE MAC

identifiers which can be changed easily. Hence, duplication of IP address may occur

which seriously causes problems in routing. Moreover, flooding during DAD

procedure makes the scheme non-scalable. To overcome this scalability issue, an

extension is proposed in [9] where a hierarchical structure is created by special

nodes (called Leader nodes) for flooding during the DAD procedure in bounded

areas rather than entire network. Each leader selects a subnet ID and issues Router
Advertisement (RA) to the nodes which are within their scope i.e, to the set of nodes

which are within rs hops away from itself. Router Advertisement (RA) contain

subnet ID (i.e., network prefix) and leader node’s link-local address as source

address which are used to create the site-local-address for the nodes within the

scope. Then leader nodes perform the DAD procedure only within their scope in

order to avoid duplicate Interface IDs. Since the subnet ID has to be unique for each

leader node, so DAD has to be performed among the leader nodes within the entire

ad hoc network. However, the leader election algorithm required in this solution

obviously hinders scalability. Furthermore, the cost incurred in maintaining such a

hierarchical structure for scalability may be too high.

The solution proposed by Nesargi et al. [7] considers that all nodes share a

common address space and know the current IP-address pool state. Hence, a

synchronization is required among all the nodes in the network for consistency. In

this solution (MANETconf [7]), a new node (Requester) entering the MANET

J Netw Syst Manage (2011) 19:394–426 399

123

requests for configuration to its neighbors. One of the configured neighbors, selected

through leader election algorithm, acts as an Initiator for the Requester node. Each

node belonging to the network stores all the used addresses (Allocated list), as well

as the ones that are going to be assigned (Pending list) to the new elements. This

allows each node to know the available addresses at any time. After receiving

request from a Requester the Initiator selects a free address from its own table and

sends a broadcast message to all other nodes in the MANET to check the uniqueness

of that chosen address. If the Initiator receives a positive acknowledgment from all

nodes of the MANET it assigns the address to the new node and again broadcasts

the allocation complete message within the entire MANET. Then the new node will

receive the address table in order to work as an Initiator for assigning addresses to

subsequent new nodes. Here flooding the entire network for at least 2 times is an

undeniable requirement for each newly joined node that causes the problems like

high volume of traffic, timing delay, network congestion, high protocol overhead

and some complexity for keeping the information updated in all the nodes of a

network. Nevertheless, per node storage threatens the reliability for keeping several

data structures by each node. The above facts therefore yield poor scalability.

Mohsin et al. [8] propose a buddy system which uses binary buddies. Here, all

buddy sizes are of power of two and each size is divided into two equal parts. Thus,

every node has a disjoint set of IP addresses that it can assign to a new node without

consulting any other node in the network. When a newly joined node requests an IP

address, the Initiator divides its IP address pool into two equal halves and offers one

half to the requesting node. The new node assigns itself an IP address from the

acquired pool of addresses, storing the rest of addresses to configure other nodes

later. The new node is now configured and is considered as the Buddy of the

Initiator. Nodes synchronize the IP address blocks which they store to keep track of

the assigned IP addresses and to detect any IP address leakage. Each node

broadcasts its IP address pool to all other nodes in the network and each node

receiving an IP pool from another node records the received information in its IP

address table. Through this approach, the available IP addresses are organized in the

form of a binary tree with a division of two identical blocks (Buddies) per level

among the nodes in the network. The proposed mechanism can also maintain the

consistency in case of graceful and abrupt departures. This way, the IP address

allocation has disjoint address pools, and the nodes can be sure that the allocated

addresses are unique. It is evident that the advantage of this method is that the IP-

address pool will be allocated quickly. However, the cost for sending a large amount

of control messages through broadcasting within the entire network in order to

invoke an IP address is high. In addition it cannot guarantee a uniform distribution

of the IP-address pools in the MANET. Tayal et al. [13] propose a solution where a

newly joined (Requester) node also has to contact the Initiator. If the Initiator has

the address pool, it divides it into two parts and allocates one part to the Requester.

On the other hand if it does not have the address pool, this search message is

forwarded recursively by all the nodes which do not have an address pool. If a node

replies with its address pool, it marks half of its addresses as under allocation and

wait for a confirmation message from the Initiator. The Initiator sends confirmation

message to the node whose address pool it received first, and allocates the received

400 J Netw Syst Manage (2011) 19:394–426

123

address pool to the requesting node. But this protocol has a severe disadvantage as it

requires flooding to search nodes with available address pool and requires a waiting

for non-deterministic time in case of exhaustion of all address pools. Another

stateful approach, Dynamic Address Assignment Protocol (DAP) [14], also allows

an Initiator to subdivide its available IP address set with newly joined (Requester)

node. However, when a node has an empty address set, it asks for an address set

reallocation. This reallocation and the detection of a possible address leakage can

cause a high control load in the network, depending on how the addresses are

distributed among nodes. Furthermore, network identifiers used in partition merging

is not suitable as these identifiers give no information about the current set of nodes

in each partition. Another drawback is storage capacity because of maintaining the

list of address set in each node. Another dynamic address assignment [15] based on

the buddy system also handles node mobility during address assignment, message

losses, network partition and merging. However, network-wide flooding is required

for address reclamation in order to avoid address leakage which turns the solution

non-scalable for large networks. Moreover, handling partitions and merging may

also incur high overhead due to globalized nature of this protocol.

Unlike above approaches ([7, 8, 13]), Zhou et al. [10] introduce an approach

which is different in a way that every node generates new addresses with the help of

a special common distributed allocation function. This idea is also known as

Prophet Address Allocation scheme. This scheme describes a function that produces

addresses which are unique in the network, i.e., no other node generates the same

address. Hence, disjoint address space is created by each node and thus requires no

flooding which in turn implies scalability. But, since there is hardly any function

that is strong enough to guarantee a unique address, there is some small probability

of address duplicity which is a fundamental problem for any autoconfiguration

protocol in MANET. Though the protocol gives solution of partitioning and

merging for small networks, it introduces lots of message losses in case of large

networks which hinders scalability. Unlike also MANETconf [7], which deploys

full replication, the distributed IP address assignment scheme [16], proposed by

Sheu et al., requires no data replication. Here instead of every node (as in [8]), only

coordinators keep available IP address pool and are thereby responsible for

configuring newly joined nodes. Coordinators in the network form a virtual C-tree in

order to periodically update their address allocation information to C-root, which is

the first node that entered the network. Though the solution incurs lower latency,

lower storage usage and less control overhead to configure small number of nodes, it

does not perform well as the network size grows. Moreover, detection of departed

nodes and maintenance of the IP allocation table of the entire network relies on the

C-root which becomes bottleneck and thereby demonstrates serious drawback.

Tinghui et al. [17], in their Quorum Based Autoconfiguration, propose two-level

hierarchy to configure the MANET. IP address block is replicated locally in

adjacent cluster heads. A newly joined node acquires IP from a cluster head, called

Allocator, through Quorum voting mechanism where only a partial decision is

sufficient to have a valid IP address. Though it reduces overhead satisfactorily, it

does not ensure data consistency. However, in our proposed approach, there is no

J Netw Syst Manage (2011) 19:394–426 401

123

leader or cluster head selection or election or voting which causes large protocol

overhead in order to ensure consistency.

Ancillotti et al. [18] propose an AH-DHCP protocol to assign a globally routable

IPv4 address to the mobile nodes of a multi-hop WLAN using the DHCP-based

mechanisms already implemented in the wired part of the network. The limitation of

this solution is that it does not divide the network into subnets, thus can only work

with routing protocols that spread routing information about every host. Nonethe-

less, the solution assumes that gateways, which interact with DHCP server

established in the wired part, are the first nodes to join multi-hop WLAN and are

configured beforehand which is impractical to MANET like environment. More-

over, it does not consider any solution for stand-alone MANET which is the

fundamental concern for any autoconfiguration protocol. Automatic IP Address

Configuration (AIPAC) [19] protocol, proposed by Fazio et al., provides a solution

with Initiator and Requester as in [7] for solving the problem (associated with the

solution [6]) of two nodes using the same temporary IP address while conducting

DAD algorithm. The Initiator randomly selects an address and broadcasts a query

message to check whether the address belongs to any other host. Any node receiving

this broadcast message checks its routing table and sends a negative reply to the

Initiator if a match is detected. Then the Initiator again chooses randomly another

new IP address and repeats the process. On the contrary, if no reply is received for a

given time interval, the Initiator broadcasts once more the same message to ensure

no loss of reply messages due to possible errors in wireless channels. If neither reply

arrives, it implies that the address is not used yet. Then the Initiator notifies the

Requester with the NetID of the network and the resolved IP address. However,

AIPAC does not specify how it handles the situation of more than one node

requesting for the same IP address at the same time. Hence, uniqueness in this

scheme is not guaranteed. Also like strong DAD [6], communication overhead

increases as more nodes join the network since the number of DAD trials are likely

to increase before a free IP address is obtained.

In the protocol PACMAN [20] (hybrid autoconfiguration), though node gathers

state information from ongoing routing protocol packets to save bandwidth, a node

assigns address to itself as in stateless protocols. Globally unique address is found

on the basis of MANET-local address. Run Length Limited (RLL) encoding is used

to compress the address as well as to limit bandwidth. A node must know about the

compression scheme which is a drawback of this work. Scalability issue is also

ignored. Yuan et al. [21] propose a three-level hierarchy to automatically configure

the MANET. Though it uses stateful addressing scheme, there is no distributed

server to efficiently obtain IP addresses. A DAD is also run in the entire network to

ensure uniqueness. However, in our approach, instead of running DAD in the entire

network, a node just sends query to some selected servers to test the uniqueness of

the chosen IP address. Natalia et al. in their literature [22] propose a filter-base

autoconfiguration protocol. Bloom filter is used to detect and resolve network

partitioning and merging, and Sequence filter is used to take IP addresses. When a

node takes an IP address based on Sequence filter, it requires to run a DAD in the

whole network to update sequence filters of all other nodes residing in the network.

But in our proposed protocol there is no need to run the DAD in the entire network.

402 J Netw Syst Manage (2011) 19:394–426

123

Moreover, the solution does not address the issue of several nodes simultaneously

choosing the same IP address at the same time. Again if a node gracefully departs

the network it must notify the entire network to update the Sequence filters of all

other nodes to prevent address leakage. But when a node departs without notifying

because of software crushing or power failure, all the nodes require to reset their

Sequence filters and return to the network initialization procedure after reaching a

certain threshold value of the Sequence filter. Moreover, to detect and resolve

network partitioning and merging, all the nodes in the same network must have the

same bloom filters. This costs extra overhead in the network. Whenever two

network merges, one of the networks must reset bloom filters based on low priority

partition.

3 Preliminaries

In this paper we introduce a concept called Duplicate-IP Detection Service to ensure

uniqueness of an IP address in entire network. But before going into the deep, it is

necessary to describe some preliminary issues involved in this protocol

3.1 Geographic Forwarding

Geographic forwarding is used in our protocol as the basis of routing packets from

one node to another. In geographic forwarding, a node knows its position i.e.,

altitude, latitude and longitude from GPS which gives almost correct measurement.

Every node then periodically informs its existence to all of its neighbors by

broadcasting HELLO messages within one hop. A neighbor node, upon reception of

the HELLO message (Fig. 1), allocates an entry for the source of the HELLO

message into its Neighbor Allocation Table (NAT, hereafter) along with the

source’s IP address, position, velocity and time of the HELLO message received.

Now consider a scenario where node A wants to communicate with another node

C and has the location information of node C with the help of any location service

(e.g., GLS [23]). Before sending a message to node C, node A appends C’s IP

address and C’s current geographic position in the packet header. Then node A looks

up its Neighbor Allocation Table to find a node B which is geographically closest to

node C. If the node C and node B are the same node, then node A sends the packet to

node C directly. Otherwise node A forwards the packet to the intermediate node

B. This process is then repeated in node B and in all subsequent nodes until the

packet is received by node C.

Source IP address

Source Position

Source Velocity

HELLOFig. 1 HELLO message body

J Netw Syst Manage (2011) 19:394–426 403

123

3.2 The Architecture

To automatically organize Duplicate-IP address Detection Servers (DDSs), we

exploit the architecture proposed for Grid Location Service (GLS) [23]. In this

architecture the entire network topology is divided into several hierarchical grid

structures. The grids are organized with squares of increasing sizes. The smallest

grid is referred to as an Order-1 square. Four such Order-1 squares form an Order-2

square. Similarly, four Order-2 squares make up an Order-3 square and so on. In

brief, the Grid Formulation Rule is: Any Order-n (n� 2) square is composed of four
Order-(n - 1) squares and any Order-n (n� 1) square is constituent part of one
and only one Order-(n ? i) squares, where i ¼ 1; 2; 3; to ensure no overlap. The
rule followed by an Order-n square is that its lower left coordinates must be of the

form (a � 2n�1; b � 2n�1) for integers a and b. Figure 2 shows a sample grid hierarchy

that follows the above rule.

Figure 2 depicts the network area up to Order-4 square. Hence, there are four

Order-3 squares, each of which in turn contains four Order-2 squares. Again each of

such four Order-2 squares contains four Order-1 squares. So, the above mentioned

network has 64 Order-1 squares which are numbered from 1 to 64. Among these 64

Order-1 squares, the 1st, 2nd, 9th and 10th squares form an Order-2 square which is

named as A (as listed in Table 1). Thus there are total 16 Order-2 squares which are

numbered from A to P as inscribed in Table 1. Among these 16 Order-2 squares A,
B, E and F constitute an Order-3 square a (as shown in Table 1). Finally, 4 such

1 8

9

2 3

10 11 12 13

4 5 6 7

14 15 16

17 18 19 20 21 22 23 24

30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54

25 26 27 28 29

55 56

6463626160595857

172.168.55.84
172.168.55.76

172.168.55.12
172.168.55.43

172.168.55.31

172.168.55.8

172.168.55.20 172.168.55.21 172.168.55.61

172.168.55.55

172.168.55.98

172.168.55.32

172.168.55.10
172.168.55.28

172.168.55.17

172.168.55.2

172.168.55.27

172.168.55.14

172.168.55.72 172.168.55.41

172.168.55.63

172.168.55.95 172.168.55.23
172.168.55.30

172.168.55.26

172.168.55.19

172.168.55.5

172.168.55.35 172.168.55.1

172.168.55.62
172.168.55.91

172.168.55.45
172.168.55.50 172.168.55.37 172.168.55.70

172.168.55.39 172.168.55.90172.168.55.38

Fig. 2 A DDS example

404 J Netw Syst Manage (2011) 19:394–426

123

Order-3 squares a, b, c and d jointly complete the Order-4 square n. It is also to be

noted that 28th, 29th, 36th and 37st Order-1 squares or F, G, J and K Order-2

squares cannot form any higher Order-2 and Order-3 square respectively. So, any of

such combination of lower Order squares cannot make any higher Order square

which violates the Grid Formulation Rule given above (Fig. 3). The composition of

entire network using different Order squares are shown in Fig. 4 as a hierarchy of

grids.

3.3 Selection Process of Duplicate-IP Address Detection Server

Selection process of DDSs of a node is based on its current IP address and the

predetermined grid hierarchy. Here we first describe which nodes are selected as

DDSs for a particular node and then how they are selected through HELLO and

UPDATE messages. For the grid hierarchy of Fig. 2, at most 10 DDSs can be

selected for a node in different Order squares. Of these 10 DDSs, 1 DDS is from the

node’s own Order-1 square, 3 DDSs are from the node’s three peer Order-1 squares,

3 DDSs are from the node’s three peer Order-2 squares and 3 DDSs are from the

Table 1 Grid hierarchy

Source Position

Source IP Address

QUERY

Destination IP

Destination Square

Timeout Count

Source Position

Source IP Address

UPDATE

Destination Square

Timeout Count

Time Stamp

Source Position

Source IP Address

Destination IP

Destination Square

Timeout Count

NACK
Fig. 3 QUERY, NACK and
UPDATE message body

J Netw Syst Manage (2011) 19:394–426 405

123

node’s three peer Order-3 squares. The different squares from which 10 DDSs

(shown as filled circles in Fig. 2) are selected for node B are: 21st Order-1 square;

29th, 30th and 22nd peer Order-1 squares; C, D and H peer Order-2 squares and a; c
and d peer Order-3 squares. Note also that, if no node is present in a square, then

obviously no node in that square is selected as DDS for other nodes. So for node

A (in 3rd Order-1 square) not all 10 DDSs are selected since 2 peer Order-1 squares

(4th and 12th Order-1 squares) are empty. Now which node in a square is selected

as DDS for a particular node follows the principle called DDS Selection Principle
(DSP). The principle has 3 cases:

CaseðaÞ : In an Order square, that node is selected as DDS whose IP address is
least but greater than the IP address of a particular node for which a DDS is
going to be selected. If no such node is present in that square go to Case (b).
CaseðbÞ : In an Order square, for a particular node one is selected as DDS whose
IP address is absolutely least in that square. If no such node is present in that
square go to Case (c).
CaseðcÞ : In an Order square, the node itself is selected as its own DDS.

For the purpose of clarification the above three cases of DSP are explained with

three specific examples in Fig. 5. The Case (a) (shown in Fig. 5a) arises when node

X with IP address 195.125.70.10 has three neighbors with IP addresses

195.125.70.8, 195.125.70.11 and 195.125.70.12 in its Order-1 square. So, according

Level 4

O
rd

er
−

1

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

O
rd

er
−

2

Level 2

Level 3

Level 1 Order−4

Order−3 Order−3 Order−3 Order−3

Fig. 4 The composition of entire network as hierarchy of grids

(a) (b) (c)

195.125.70.100

195.125.70.5

195.125.70.20

195.125.70.8
195.125.70.1

195.125.70.10

195.125.70.12

195.125.70.11
195.125.70.8

Fig. 5 Examples of DDS
selection principle (DSP)

406 J Netw Syst Manage (2011) 19:394–426

123

to Case (a) node with IP address 195.125.70.11 is selected as X’s DDS (shown as

filled circle) since 195.125.70.11 is the least IP address between 195.125.70.11 and

195.125.70.12 which are greater than node X’s IP address 195.125.70.10. The Case
(b) (in Fig. 5b) arises if node Y having IP address 195.125.70.20 has neighbors with

IP addresses 195.125.70.8, 195.125.70.5 and 195.125.70.1 in its Order-1 square. In

this scenario Case (a) is failed and according to Case (b) node with IP address

195.125.70.1 is selected as DDS for node Y since 195.125.70.1 is the least IP

address among all other nodes’ IP addresses (i.e., 195.125.70.8, 195.125.70.5 and

195.125.70.1). Finally, the Case (c) (in Fig. 5c) arises when the node Z with IP

address 195.125.70.100 is the only node present in its own Order-1 square. Hence,

the node Z acts as its own DDS in its Order-1 square. This above principle is also

similarly applied to higher Order-n (n ¼ 1; 2; 3; . . .) squares to setup DDSs.

Figure 2 shows the selected DDSs of node B. As there is no other node in its own

Order-1 square i.e, in 21st Order-1 square, node B itself is selected (according to

Case (c) of DSP) as its own DDS in that square. Then, three other DDSs in its three

peer Order-1 squares (29th, 30th and 22nd Order-1 squares) are also chosen

according to the DSP. Therefore, the node B itself and 172.168.55.63 (according to

Case (a) of DSP) from 29th Order-1 square, 172.168.55.23 (according to Case (a))
from 30th Order-1 square and 172.168.55.2 (according to Case (b)) from 22nd
Order-1 square are selected as DDSs in its Order-2 square. Next, 172.168.55.43,

172.168.55.31 and 172.168.55.26 are also chosen as DDSs respectively from C, D
and H peer Order-2 squares of node B’s Order-2 square. In peer Order-2 square

C there are 4 nodes with IP addresses 172.168.55.12, 172.168.55.43, 172.168.55.55

and 172.168.55.61. Under Case (a) of DSP 172.168.55.43 is selected as DDS.

Similarly the other nodes 172.168.55.31 and 172.168.55.26 are selected as DDSs

respectively in D and H Order-2 squares under Case (a). Again, 172.168.55.20,

172.168.55.19 and 172.168.55.37 are also picked up (according to Case (a)) as

DDSs in a, c and d Order-3 squares respectively. Similar concept can be extended to

determine DDSs at higher Order squares. For illustration and clarity purpose, we

show the Fig. 2 only up to Order-4 square.

The above description of this subsection demonstrates the selection procedure of

Duplicate-IP Detection Servers (DDSs) for a particular node. Now we describe how

DDSs are selected efficiently through HELLO messages and geographic forwarding

of UPDATE messages (message body is shown in Fig. 3) with the help of Figs. 2

and 6a. In our protocol, only the HELLO message is sufficient to select a DDS in a

node’s own Order-1 square. But, except the DDS in a node’s own Order-1 square,

all DDSs from other squares are selected dynamically only when UPDATE

messages reach those squares. The most important requirement for node B to

distribute its current information to the appropriate DDSs in an Order-n square is:

The nodes contained in that square have already distributed their current
information throughout that square. As soon as the Order-n DDSs are operating,
there is sufficient capability for geographic routing to set up the Order-(n ? 1)

DDSs.

The size of the smallest Order square (Order-1 square) in the grid hierarchy is

deliberately chosen in such a way that all the nodes in that square are within their

mutual transmission range, i.e., all nodes are able to know all other nodes in their

J Netw Syst Manage (2011) 19:394–426 407

123

Order-1 square through the periodic HELLO beacons. In Fig. 2 and Fig. 6a, only

node B is present in its own Order-1 square (i.e., 21st Order-1 square). As a result,

no HELLO message is received by node B from any node in that 21st Order-1

square. Hence, node B has no information about any other node in that square and

thus selects itself as DDS for itself in its Order-1 square. In the mean time, the nodes

in other 3 Order-1 peer squares (29th, 30th and 22nd squares) also have already

known their respective neighbors. Therefore, their DDSs also have been selected

there with the help of each others’ HELLO messages. DDT of these DDSs will also

be updated. At that moment, the partial content of the DDT of each node in the

Order-2 square G is shown in Table 2.

Under this circumstance, nodes in each Order-1 square of G Order-2 square have

already disseminated their current information within their respective Order-1

squares. So after a little while of sending the first few HELLO messages, all nodes

send 3 UPDATE messages to their 3 Order-1 peer squares. Node B sends UPDATE

messages to 29th, 30th and 22nd Order-1 squares using geographic forwarding as

shown in Fig. 6a. We call it Grid Forwarding because rather than location and IP

address of the destination node, only location of the destined square’s midpoint is

written in the destination field of the UPDATE message’s packet header. The

UPDATE message destined to 29th peer Order-1 square is first caught by node

172.168.55.95 in that square. Then 172.168.55.95 checks whether it can act as DDS

for node B. So it compares node B’s IP address with its own IP address and also with

IP addresses stored in its DDT. It finds that 172.168.55.63 in its DDT is least IP

address greater than 172.168.55.17 in its (i.e., 29th) Order-1 square. So it determines

172.168.55.63 is worthwhile (according to Case (a) of DSP) to act as DDS for node

B and forwards the UPDATE message of node B to 172.168.55.63. After receiving

the UPDATE message, 172.168.55.63 also checks its DDT and ensures with its

explored knowledge that no other node in its Order-1 square is further least node

greater than 172.168.55.17 to become a DDS for node B. Hence, it is selected as the

DDS and does not further forward this UPDATE message. On the contrary, node

Table 2 Partial content stored in DDT of the nodes in G Order-2 square

172.168.55.63

172.168.55.95

172.168.55.30
172.168.55.23

172.168.55.2

21 22
172.168.55.17

B

3029

(b)(a)

Fig. 6 a Node B’s UPDATE
messages to its peer Order-1
squares. b 9 UPDATE messages
to 9 different Order squares

408 J Netw Syst Manage (2011) 19:394–426

123

with IP address 172.168.55.23 first catches the UPDATE message of node

B destined to the 30th Order-1 square and finds that it is the least node greater than

172.168.55.17. Hence, it acts as a DDS for node B. No further forwarding is also

required and it stores node B’s information (i.e., IP address, geographic position etc)

in its DDT. UPDATE message transmitted for the 22nd Order-1 square is received

by 172.168.55.2 and it selects itself as DDS of node B as no other node is present

there. In the same way, each node in the 29th, 30th and 22nd Order-1 squares also

send 3 UPDATE messages to their respective 3 Order-1 peer squares and thus DDSs

for them in those squares are also properly selected. So DDT of all nodes in that

Order-2 square are updated regularly through the periodic UPDATE messages. The

current partial content of DDT of each node in Order-2 square G after sending of the

UPDATE messages is shown in Table 3.

Table 3 shows that all nodes have already distributed their current information

throughout the Order-2 square G. So when all nodes in an Order-1 square send

UPDATE messages to their peer Order-1 squares, all nodes in those squares are able

to know the most eligible node for acting as DDS in their Order-2 square (for any

other node). In similar way nodes in other Order-2 squares also distribute their

current information within their respective squares. However, node B then sends 3

UPDATE messages to its three peer Order-2 squares and subsequently three peer

Order-3 squares. Thus DDSs are selected from those squares under the same

procedure described above and therefore contents of DDT of them are also updated.

So, like node B every node sends total 9 UPDATE messages to 9 different Order

squares and hence, 9 DDSs are selected. These maximum 9 DDSs and 1 DDS in

own Order-1 square sum up 10 DDSs for each node. A scenario of sending 9

UPDATE messages of a node is depicted in Fig. 6b.

4 Autoconfiguration Protocol

In the proposed address autoconfiguration protocol a node at first randomly chooses

an IP address which we call its real IP address. This randomly chosen IP address

becomes its final IP address when the node becomes sure that no other node in the

network is currently using the same IP address i.e. there is no duplicity. However, to

check for duplicity, we provide an intelligent mechanism. If the same IP address is

Table 3 Partial content stored

in DDT of the nodes in G Order-

2 square

J Netw Syst Manage (2011) 19:394–426 409

123

already assigned currently to another node, then there must exists several DDSs in

the network for that node. By consulting only those DDSs the possibility of

duplicity can be avoided. A node unicasts query messages to all of these (possible)

DDSs to check for duplication. But the paradox is to conduct this query and to get

back a reply successfully, the node needs an IP address! Therefore, at first we assign

temporary IP address to this newly joined node. This temporary IP address is used

just for the query-response purpose and later on this temporary IP address is

discarded and reused by some other newly joined node within the same grid. This

temporary IP address is guaranteed to be conflict-free. These two steps are described

below in details.

4.1 Temporary IP Address Assignment

At the very first when the MANET is not initialized, we assume that several nodes

simultaneously enter the network and they are connected, i.e., there exists at least

one communication path among the nodes. Each Order-1 square is allocated with a

predefined disjoint block of IP addresses which we call temporary IP address pool.
Two Order-1 squares do not have any common IP address in their temporary IP

address pools. We also assume that all nodes have prior knowledge of all temporary

IP address pools before joining the network. The reasonable account of this

assumption is as follows: if a MANET has 64 Order-1 squares and its total range of

temporary IP address is from 1 to 2,048, then every single Order-1 square can use

(2048/64 =) 32 temporary IP addresses. Hence, the 1st Order-1 square’s temporary

IP addresses ranges from 1 to 32, 2nd Order-1 square’s temporary IP addresses

ranges from 33 to 64 and so on. Since a node in the network knows its geographic

position through GPS, it can easily determine the particular Order-1 square on

which it resides. Therefore, if a node is able to know its residing Order-1 square, it

can also determine the disjoint temporary IP address block (which is a part of total

temporary IP address pool for the whole network) that is allotted for that specific

square. Thus every node has prior knowledge about this disjoint block of temporary

IP address pool in order to get a temporary IP address before assigning a real IP

address.

A newly joined node determines its temporary IP address with minimal overhead

as described as follows. When a node joins in the MANET, at first it identifies its

position using GPS. From its position it can easily calculate the Order-1 square

within which it is located. Then it chooses a conflict-free temporary IP address from

the temporary IP address pool reserved for that Order-1 square. As every node

knows all other nodes within its own Order-1 square (the size of an Order-1 square

is such that all nodes in that Order-1 square are within their mutual transmission

range), choosing of such conflict-free temporary IP address is easy. Therefore, a

node randomly picks up an IP address from the temporary IP address pool reserved

for that square and observes the Neighbor Allocation Table. It repeats the same

process in case of conflicts. But conflicts in determining unique temporary IP

address may still arise when several newly joined nodes choose the same temporary

IP address simultaneously. To prevent such conflicts, every node runs a DAD

algorithm within its Order-1 square after choosing temporary IP address. It is done

410 J Netw Syst Manage (2011) 19:394–426

123

by one-hop broadcasting of DAD message within its own square. If a node finds a

DAD message containing the address same as its chosen temporary IP address, it

sends a NACK message. Receiving NACK message, that newly joined node gives

up that chosen temporary IP address and randomly chooses another temporary IP

address after a random amount of time. Thus a newly joined node gets a temporary

address from the allocated temporary IP address pool for the smallest square where

the node resides in.

The paradox is if the conflict-free temporary IP address can be achieved, why it is

necessary to assign again the real IP address! Assigning real IP address following

temporary IP address assignment is necessary for scalability purpose. If we assign

disjoint blocks of real IP address to every Order-1 square then there might be a

situation where the number of joining nodes in an Order-1 square is greater than the

pre-assigned IP address pool for that Order-1 square. Hence, some of the joining

nodes to that Order-1 square never get real IP address. Moreover, a newly joining

node in an Order-1 square may not be able to avail any IP address even though that

particular Order-1 square is currently empty. This may happen when that Order-1

square is left with no spare IP address as all IP addresses reserved for that square

may be used up by the past/early joining nodes and these nodes now may have

changed their locations to other squares. That is why our mechanism requires a

disjoint blocks of predefined temporary IP addresses to every Order-1 square that

are to be used by newly joining nodes at first place. Once a node acquires a conflict-

free real IP address, it releases its temporary IP address. Then its released temporary

IP address can be reused by some other newly joined nodes. This reusability helps

in situations where the number of newly joining nodes in an Order-1 square is larger

than the number of temporary IP addresses assigned for that particular square. In

worst case, some joining nodes may need to wait until one of the nodes of its Order-

1 square releases its temporary IP address.

4.2 Real IP Address Assignment

After resolving temporary IP address, a node randomly chooses a tentative (real) IP

address. It then makes queries through QUERY messages to the best nodes (i.e., to

DDSs) for the chosen real IP address in Order-n (n ¼ 1; 2; 3) peer squares. If an

entry is found in the Duplicate-IP address Detection Table (DDT) of any of those

DDSs, the corresponding DDS immediately informs the node using NACK

message. The node then chooses another tentative IP address randomly and the

same process is repeated again after a random amount of time. The QUERY

messages are sent iteratively. At first, the node sends queries to DDSs in peer Order-

1 squares. If IP address conflict is detected in any Order-1 square, there is no need to

send queries in peer Order-2 squares. In general, when an IP address conflict is

detected in Order-n square, there is no need to send any further query to Order-

(nþ 1) square or higher Order peer squares. If no conflict is detected in any of the

DDSs at any Order, no reply is sent to the requesting node. Therefore, if the node

receives no NACK message within a timeout interval, it assumes that the tentative

IP address is conflict-free and finalizes this IP address as its real IP address.

J Netw Syst Manage (2011) 19:394–426 411

123

How a query is accomplished is described here with an illustrative example.

Suppose a node A in Fig. 2 with temporary IP address 172.168.55.76 randomly

chooses 172.168.55.17 as its tentative (real) IP address. Note that, node B has

already assigned this IP address 172.168.55.17 to itself and updated all its DDSs,

but node A is not aware of this situation yet. After choosing tentative IP address,

node A sends QUERY message to its own Order-1 square with the same principle

for choosing DDSs as described in Sect. 3.3. If no NACK message is received

within a predefined time interval, it sends three query messages to its three peer

Order-1 squares (i.e., 4th, 11th and 12th Order-1 squares) and the process is

repeated again for higher Orders. In our example, no node in the 3rd, 4th, 11th
and 12th Order-1 squares is currently acting as a DDS for node B and hence, there

is no chance of receiving NACK from any node in these squares. After predefined

amount of time node A again sends three queries to its three peer Order-2 squares

(i.e., A, E and F Order-2 squares). At this point, a node with IP address

172.168.55.20, currently acting as a DDS of node B, sends a NACK message to

node A using geographic forwarding. If no NACK message is received from the

highest Order squares, the node finalizes its chosen tentative IP address as its real

IP address. For better understanding of the sequence of our protocol, a flow chart

is given in Fig. 7.

4.3 How Many DDSs are Reasonably Needed

Within the proposed scheme every node in the network acts as DDS server for some

other nodes. However, a single node has a fixed number of (multiple) DDSs which

depends on the number of grids in the deployment area. The number of grids also

implicitly determine the number of levels in the grid hierarchy (see Table 1 and

Fig. 4). For example, a 2 9 2 grid has in total 4 small grids where we can form 2

levels of hierarchy, whereas a 4 9 4 grid has 16 grids in 3 levels of hierarchy, an

8 9 8 grid has 64 grids organized in 4 levels of hierarchy and a 16 9 16 grid has

256 grids in 5 levels of hierarchy. After determining the number of levels within the

grid hierarchy it is pretty straightforward to compute the number of DDSs needed

for each node. If there are exactly 2 levels then total DDSs for every node is 4, for 3

levels of hierarchy it is 7, for 4 levels it is 10. The general formula is, if there is

exactly n levels in grid hierarchy then there are exactly 1 ? (n - 1) 9 3 DDSs for

each node.

5 Some Critical Issues

Various critical events may arise when a node wants to obtain an IP address. These

events may occur when same tentative IP address may be chosen simultaneously by

several nodes or there occurs frequent switching events from temporary IP address

to real IP address of a node. These critical issues and their proposed solutions are

described below with illustrative examples.

412 J Netw Syst Manage (2011) 19:394–426

123

5.1 Concurrent Initialization

Same tentative address may be randomly chosen by several nodes simultaneously or

within a transitive period. Transitive period is the interval between the time when a

node starts its tentative real IP address selection process and the time when it

finishes updating all of its DDSs in entire MANET with its assigned real IP address.

Obviously, if there is no mechanism in DDSs to distinguish the same requesting IP

address from different nodes within this critical time, there must be duplicity of IP

addresses in the network. This unwanted event is easily overcome by creating a

REQUEST_QUEUE in every DDS. When a query message for an IP address comes

to that IP address’s DDS, it makes an entry in its REQUEST_QUEUE with

h tentative IP address, temporary IP address, Timeout i tuple. If the server finds an

entry already present in its queue with the same tentative but different temporary IP

address pair, it immediately sends a NACK message to the requesting node and thus

Randomly chooses a tentaive real IP

address from real IP adress block

Sends QUERY messages to the

respective DDSs for the chosen

tentative real IP address

Any NACK received?

real IP as its permanent real IP address

Assigns the randomy chosen tentative

DDSs in different Order squares are

selected according to its real IP address

another one
and randomly chooses
tentative real IP address

Gives up its chosen
Yes

No

Waits until timeout occurs

Done

and its residing Order−1 square

Finds its position using GPS

Randomly picks up a temporary IP

Checks conflicts in its NAT

Checks conflicts by conducting DAD

within its Order−1 square

DDSs in different Order squares are

randomly chooses another

Gives up its chosen

one

temporary IP address and

Yes

No

Yes

No

Conflicts found?

Conflicts found?

A node enters the network

IP address block for that Order−1 square

address from the specified Temporary

selected according to its temporary IP
address

as its temporary IP address
Assigns the randomly chosen IP address

Fig. 7 Flow chart of SAAMAN

J Netw Syst Manage (2011) 19:394–426 413

123

avoids duplicate IP address assignment. Furthermore the entry of the REQUES-

T_QUEUE is deleted when an UPDATE packet is received or the timeout occurs.

5.2 Dynamically Changing DDSs

With the change of node’s identity from temporary IP address to real IP address,

evenly distributed DDSs of this node are also changed dynamically. As a result,

query message may not hit the desired DDSs at that point of time. This event is now

discussed elaborately by an illustrative example. Suppose, node A (in Fig. 2) with

temporary IP address 172.168.55.76 randomly chooses its real IP address as

172.168.55.17 which is already taken by node B. Now, node A at first sends four

query messages in its Order-2 square, i.e, in 4th, 11th and 12th Order-1 square along

with its own Order-1 square (i.e., 3rd Order-1 square). It is evident from the figure

that there is no node in its Order-2 square currently representing itself as a DDS of

node B. So, there is no incoming NACK message to prevent the node A from

obtaining real IP address. After a predefined amount of time, node A sends another

three query messages to its Order-3 square (i.e, in A, E and F Order-2 square). As

there is no DDSs in E and F Order-2 squares, there is no NACK message from these

Order-2 squares. But in A Order-2 square, a node with IP address 172.168.55.20 is

now currently acting as a DDS of node B. So, when the node A sends a query message

to A Order-2 square, the first node with IP address 172.168.55.19 (node with

temporary IP address 172.168.55.80 recently takes the real IP address 172.168.55.19

and does not get sufficient time to be updated by node B with UPDATE messages)

catches the query message. As it is the best node of that Order-2 square, it does not

retransmit the query message to the real DDS of node B—which is node with IP

address 172.168.55.20. This problem is solved by preventing a node obtaining a real

IP address recently from processing any query messages although it is the best node

for the requesting tentative IP address for that square. So, it just sends a NACK

message to the requested node. After some predefined amount of time it comes back

to capable state and starts processing any incoming query.

5.3 Node(s) Having No Neighbor(s)

When a node enters the MANET and finds no neighbor, it only takes temporary IP

address randomly. There is no need to take real IP address. When the network

begins to converge (i.e., when the node slowly discovers its neighbors), it then

chooses a real IP address. This scenario is described above. In Fig. 8a, there is only

one node in the entire grid and in Fig. 8b, there are only two nodes but have no

communication link/path between them. So, until they have enough neighbors to

communicate, two nodes may continue their normal operation with their chosen

temporary IP addresses.

5.4 Departure of Nodes

A node can depart from the network either gracefully or abruptly (i.e. due to

mobility or sudden software crash or power failure). So, there is a chance of ‘‘IP

414 J Netw Syst Manage (2011) 19:394–426

123

address leakage’’. But in our approach it is resolved efficiently without requiring

any extra cost. As part of entry update procedure, the UPDATE and HELLO

messages are periodically sent by every node in the network. If no HELLO and

UPDATE messages are received repeatedly after some predefined time interval

from a node, all the neighbor nodes and the DDSs of that particular node remove the

entries corresponding to that node. This IP address then can be automatically reused

by another newly joined node.

5.5 Moving From One Square to Another Square

In this case, depending on a node’s new position, a new set of DDSs can be chosen

or old DDSs can be updated with its current location and speed for efficient

geographic forwarding. There is no need to change the chosen IP address. If there is

no communication link between the two places, network partitioning occurs. After a

predefined time when there is no UPDATE and HELLO messages to update and

validate the entry of its DDSs and neighbors respectively, the corresponding entry is

automatically deleted and used to assign the IP address to another node requesting

the same IP address.

5.6 Message Losses

Message losses are frequent in wireless networks. Because of network congestion,

limited memory capacity of the nodes, corruption of message header, message can

be discarded or lost. To accommodate message losses, messages are transmitted

periodically.

5.7 Network Partitioning and Merging

Partitioning occurs when there is no communication link between two or several

parts of the MANET. Each part then acts as a separate MANET. Partitioning does

not affect in overall IP address assignment. But when merging of two or several

MANETs occurs, it affects. Let us consider this scenario: Here a node joins the

network by appearing within a grid, takes a temporary IP address, resolves the

temporary IP address and finally takes the real IP address. After that it goes to

another grid apart from the previous grid having no communication links or paths

(a) (b)

Fig. 8 Node(s) having no
neighbor

J Netw Syst Manage (2011) 19:394–426 415

123

between the grids (Fig. 9 shows partially this scenario). Now suppose another node

joins the network in the previous grid and takes the same real IP address. As there is

no communication path between these two grids, there is no way to know for the

second node of the above scenario about this conflict in IP address. Now, when

enough nodes join the MANET and there is at least one path among the nodes and

hence merging of those separated networks occur. As a regular task, the DDSs for

all nodes are updated or reselected according to the DSP with the help of UPDATE

messages. When a DDS finds duplicate permanent IP addresses, it detects the

merging and sends requests to those duplicate nodes to leave their IP addresses and

retake a new IP address using the same autoconfiguration scheme described above.

Under this circumstance, any packets destined to those old duplicate IP address

holding nodes are discarded as the nodes are in a transition state of changing from

old IP address to new IP address. Thus, with leaving old duplicates IP address and

successfully retaking new conflict free IP address, the merging problem can be

solved efficiently.

6 Simulation

6.1 Simulation Setup

Through simulation we evaluate the performance of our protocol both for static and

mobile ad hoc networks. Between 100 and 600 nodes are randomly deployed in a

fixed area of 1; 360� 1; 360 m2. The size of an Order-1 square is assumed to be

170� 170 m2. For mobile networks each node moves randomly at average

velocities of 15; 20 and 25 ms�1 without any pause. The transmission range and

data rate of a node is 250 m and 2 MBps respectively. The joining time of all nodes

within the network are randomly chosen from 0 to 30 s. Each simulation run ends

when all nodes are assigned with real IP address. In a 32-bit IP address, the first

8-bit is unique in the network and the rest 24-bits are populated randomly (In Fig. 2

we assume first 24 bits of an IP address as the unique network ID just for

simplicity). Under this restriction, first 2048 IP addresses are allocated for

temporary IP address pool and the rest are used for real IP addresses.

A

A

Fig. 9 Node A moves from one
square to another square having
no communication link

416 J Netw Syst Manage (2011) 19:394–426

123

6.2 Performance Metrics

We analyze the performance of our proposed protocol using the following

performance metrics:

a) Number of Conflicts: When a node randomly chooses a real IP address, that

address may conflict with an already allocated IP address to another node in the

network. We define this situation as a conflict and count total number of such

situations. Note that this conflict is ultimately resolved with the help of DDSs.

b) Average latency: Latency is the time interval between the moment when a node

joins in the network and the moment when it acquires a non-conflicting real IP

address. We sum up such latency for all nodes and find the average.

c) Average DDT length: We keep track of the number of entries in each node’s

Duplicate-IP address Detection Table (DDT). All nodes’ DDT size are

summed together to get an average length. For a scalable protocol, the size of

DDT should grow very little with the increase in total number of nodes.

d) Protocol Overhead: It is defined as a ratio of total size of overhead packets in

kilobytes to total number of nodes. For any scalable protocol, this number

should be a bounded constant.

e) Average Packet loss: Any UPDATE/QUERY packets may get lost due to the

limitation of geographic forwarding (i.e. loop-hole) and/or during transient
period of a node. We count all those losses and take an average.

f) Average REQUEST_QUEUE length: This is defined as average number of

entries in REQUEST_QUEUE of nodes.

6.3 Simulation Results

At first we show average number of conflicts in Fig. 10 for both static and mobile

networks. On the average (roughly) only one conflicting situation occurs per node.

The number of conflicts increases very slowly as the network size grows. Mobile

networks have slightly more conflicting situations than static networks due to

mobility.

Figure 11 demonstrates the average latency. On the average, a node needs

8–9.5 s to acquire a real IP address after joining the network. Also average latency

increments very slowly as the number of nodes increases. Dynamic networks

exhibits more latency than static networks. Moreover, the average latency of the

proposed protocol is also examined under the circumstances of abrupt departure of

some of the nodes in the network. 25% of existing nodes are chosen randomly to

depart the network abruptly. Figure 11 also shows that the latency (for moving

nodes of velocity 25 ms�1) under this stipulated condition (i.e., abrupt departure of

nodes) is slightly higher than those of the regular cases. This is due to the message

losses and retransmission for the abruptly leaving nodes.

Average DDT length is shown in Fig. 12. From the figure it is clearly evident that

on the average, a node keeps 7–9 entries. In other words, a node acts as DDS for

roughly 7–9 other nodes in the network. Also the size does not grow too much with

J Netw Syst Manage (2011) 19:394–426 417

123

the increase in network size. For static networks average DDT length remains

almost constant at 8.5 and grows very slowly in dynamic networks. As the protocol

is truly scalable such result is quite obvious.

Per node storage for REQUEST_QUEUE is shown in Fig. 13. The figure

indicates highly scalable behavior in memory utilization. The storage requirement to

maintain the protocol is almost same with the increased network size.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

100 200 300 400 500 600

N
um

be
r

of
 C

on
fli

ct
s

P
er

 N
od

e

Number of Nodes

Static Nodes
Moving Nodes(15m/s)
Moving Nodes(20m/s)
Moving Nodes(25m/s)

Fig. 10 Average conflicts

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

100 200 300 400 500 600

A
ve

ra
ge

 L
at

en
cy

 P
er

 N
od

e
in

 s
ec

on
d

Number of Nodes

Static Nodes
Moving Nodes(15m/s)
Moving Nodes(20m/s)
Moving Nodes(25m/s)

Moving Nodes(25m/s) with 25% Departure

Fig. 11 Configuration latency

418 J Netw Syst Manage (2011) 19:394–426

123

Average packet loss per node occurs due to changing identity of nodes and

failure of geographic forwarding because of loop hole. As shown in Fig. 14, average

packet loss at the very beginning decrements rapidly as the network is becoming

more dense than the previous one. For further growth of the network, packet losses

per node remains pretty constant and have very little impact on the protocol since

the network is now dense enough to prevent loop holes.

7

8

9

10

11

12

100 200 300 400 500 600

A
ve

ra
ge

 D
D

T
 L

en
gt

h
P

er
 N

od
e

Number of Nodes

Static Nodes
Moving Nodes(15m/s)
Moving Nodes(20m/s)
Moving Nodes(25m/s)

Fig. 12 Dup-IP address detection table (DDT) length

5

6

7

8

9

10

11

100 200 300 400 500 600

A
ve

ra
ge

 R
eq

ue
st

 Q
ue

ue
 L

en
gt

h
P

er
 N

od
e

Number of Nodes

Static Nodes
Moving Nodes(15m/s)
Moving Nodes(20m/s)
Moving Nodes(25m/s)

Fig. 13 REQUEST_QUEUE length

J Netw Syst Manage (2011) 19:394–426 419

123

Figure 15 shows protocol overhead in KB per node. Protocol overhead grows

very slowly with the network size. In particular, when the number of nodes vary

from 300 to 600 nodes (i.e. a 100% increase), the protocol overhead increases only

by 20%.

30

40

50

60

70

80

90

100

110

120

100 200 300 400 500 600

A
ve

ra
ge

 P
ac

ke
t L

os
se

s
P

er
 N

od
e

Number of Nodes

Static Nodes
Moving Nodes(15m/s)
Moving Nodes(20m/s)
Moving Nodes(25m/s)

Fig. 14 Packet loss

90

100

110

120

130

140

150

160

100 200 300 400 500 600

A
ve

ra
ge

 P
ro

to
co

l O
ve

rh
ea

d
in

 k
B

yt
e

P
er

 N
od

e

Number of Nodes

Static Nodes
Moving Nodes(15m/s)
Moving Nodes(20m/s)
Moving Nodes(25m/s)

Fig. 15 Protocol overhead

420 J Netw Syst Manage (2011) 19:394–426

123

7 Analytical Comparison

We analyze our protocol theoretically and compare with the DAD [6] based

algorithms (that allows flooding throughout the entire network) since DAD is the

basis of most of the stateless autoconfiguration protocols. The analytical results

show that our protocol (SAAMAN) outperforms the DAD based protocols.

In DAD based autoconfiguration protocols (as described earlier in Sect. 2), every

new node joins with a temporary IP address and randomly chooses an IP address

from permanent IP address pool. It then broadcasts a query message, containing that

chosen IP address, to check whether the chosen IP address is already picked up by

any other node in the network. Hence, every newly joined node has to flood this

query message in the whole network at least once. If there is a conflict then the node

chooses another random IP address and repeats the flooding. Therefore the number

flooding varies with the number of times IP conflicts occurred. If a network (in this

analysis, the network is considered to be static) consists of n nodes, then a single

broadcast requires n forwarding if blind flooding is used. Therefore, n nodes incur at

least n 9 n = n2 forwarding. Hence, if every node on an average faces p conflicts

before assigning a unique IP address, then each node has to broadcast query

messages (p ? 1) times on the average (i.e., no conflict is found in last trial after

consecutive p trials). Therefore, if every node has p times conflict on an average and

the total number of nodes in a network is n (each of which runs the

autoconfiguration protocol to join the network), then the total number of forwarding

for all nodes, Fdt
, can be expressed as follows:

Fdt
¼ ðpþ 1Þ � n2

Hence, average number of forwarding per node, Fdavg
, is

Fdavg
¼ ðpþ 1Þ � n ð1Þ

Equation (1) clearly shows that the protocol overhead increases in a great extent

due to flooding for checking IP duplication as the number of nodes in the network

increases. However, the number of forwarding in our proposed protocol

(SAAMAN) depends on the network size. The detail analysis of the required

number of flooding is shown below with the help of Fig. 2 where the network is of

size Order-4.

In our protocol a newly joined node sends a single query message (through one-

hop broadcast) in its own Order-1 square, 3 query messages to its 3 peer Order-1

square DDSs, 3 query messages to its 3 peer Order-2 square DDSs and 3 query

messages to its 3 peer Order-3 square DDSs. Therefore, in total 9 query messages

are sent to 9 different Order peer squares. In fact, each of these query messages is a

single unicast message destined to respective DDS. For the ‘worst case’, we

consider that 2, 4 and 8 forwarding (in our protocol forwarding means hop counts

required for a unicast message to reach the desired destination) are required

respectively to reach an Order-1 query message to its any one peer Order-1 square

DDS, an Order-2 query message to its any one peer Order-2 square DDS and an

Order-3 query message to its any one peer Order-3 square DDS. Hence, under above

consideration, the total number of forwarding for a single (newly joined) node to

J Netw Syst Manage (2011) 19:394–426 421

123

resolve IP conflicts (or to check IP duplication) in order to assign a unique IP

address is: 1 ? 3 9 2 ? 3 9 4 ? 3 9 8 = 43. In general, the total number of

forwarding can be further broken down according to the following formulae:

Number of forwarding required to reach own Order-1 square; Fsð0Þ ¼ 1

Number of forwarding required to reach a peer Order-1 square;Fsð1Þ ¼ 2� Fsð0Þ
Number of forwarding required to reach a peer Order-2 square;Fsð2Þ ¼ 2� Fsð1Þ
Number of forwarding required to reach a peer Order-3 square;Fsð3Þ ¼ 2� Fsð2Þ

Therefore, total number of forwarding, Fs(4), that is required for a single node to

resolve IP conflicts in a network of size Order-4 is:

Fsð4Þ ¼ Fsð0Þ þ 3� Fsð1Þ þ 3� Fsð2Þ þ 3� Fsð3Þ
¼ Fsð0Þ þ 3� 2� Fsð0Þ þ 3� 2� Fsð1Þ þ 3� 2� Fsð2Þ
¼ Fsð0Þ þ 3� 2� Fsð0Þ þ 3� 22 � Fsð0Þ þ 3� 22 � Fsð1Þ
¼ Fsð0Þ þ 3� 2� Fsð0Þ þ 3� 22 � Fsð0Þ þ 3� 23 � Fsð0Þ
¼ Fsð0Þ � ð1þ 3� 2þ 3� 22 þ 3� 23Þ
¼ 1� ð1þ 3� 2� ð1þ 2þ 22ÞÞ

Hence, for the network of size Order-N, the total number of forwarding, Fs(N),

needed for a single node is:

FsðNÞ ¼ 1� ð1þ 3� 2� ð1þ 2þ 22 þ � � � þ 2N�2ÞÞ

¼ 1þ 6� 2N�2þ1 � 1

2� 1

¼ 1þ 6� ð2N�1 � 1Þ
If there are n nodes in a network where each of them sends query messages to

their respective DDSs and each node has p conflicts on the average, then the total

number of forwarding for all nodes, Fst
, is:

Fst
¼ ðpþ 1Þ � n� FsðNÞ
¼ ðpþ 1Þ � n� ð1þ 6� ð2N�1 � 1ÞÞ ½Here;N\\n�

Hence, average number of forwarding per node, Fsavg
, is:

Fsavg
¼ ðpþ 1Þ � ð1þ 6� ð2N�1 � 1ÞÞ ½Here;N\\n� ð2Þ

Since N \ \ n, Eqs. (1) and (2) conspicuously show that Fsavg
is much smaller than

Fdavg
. Therefore the protocol overhead of SAAMAN satisfactorily meager in

comparison to that of full-flooding DAD based autoconfiguration protocols. More-

over, few scenarios comparing the performance are shown in Table 4.

Even our protocol carries out better results than other DAD based autoconfig-

uration protocols that use Dominant Pruning (DP) [24] or Partial Dominant
Pruning (PDP) [25] as opposed to blind flooding for broadcasting DAD messages.

To examine it we also conduct simulations and measure average number of

forwarding required to broadcast packets throughout the entire network using DP

422 J Netw Syst Manage (2011) 19:394–426

123

and PDP. The results are shown in Table 5 which demonstrates average number of

forwarding required by a single node to broadcast in the entire network.

Tables 4 and 5 manifest that the average number of forwarding required by our

proposed protocol SAAMAN is much less than that of DP and PDP incorporated

DAD based autoconfiguration protocols. Hence, our protocol incurs less protocol

overheads, network congestions and message losses.

8 Future Works

In the proposed protocol, SAAMAN, less attention has been given to security

problems. Security problem and its solutions are an emerging area in Address
Autoconfiguration in Mobile Ad Hoc Networks. Various types of security problems

can arise in MANETs while performing autoconfiguration. These are mainly due to

Table 4 Average number of forwarding of query messages

(a)

(b)

Table 5 Average number of forwarding of query messages for DP and PDP based DAD

Simulation setup: Static environment, area: 680 9 680 m2, transmission range: 250 m. Each node in the

network generates a broadcast packet in turn. The number of forwarding required to broadcast is mea-

sured for each node and then averaged over all nodes. All data points are the mean of those averages

processed over 5 simulation runs

J Netw Syst Manage (2011) 19:394–426 423

123

different behavior of nodes. Behaviorally these unconventional nodes in MANETs

can be divided into three categories. They are Malicious Nodes, Selfish Nodes and

Helpless Nodes.

Malicious nodes are those nodes which can refrain a requesting node from

obtaining an IP address by sending frequent NACK messages. It can also capture a

block the IP addresses by periodically updating the DDSs with fake UPDATE

messages with different unused IP addresses as if those IP addresses are currently

being used.

A selfish node can deny to route the packet by simply ignoring it. As a result,

frequent message losses and network partitioning may happen. There is no first-

hand solution to this problem. Periodically monitoring the behavior of the neighbors

may solve this problem.

Helpless nodes are those nodes that have less battery power to transmit or

forward packets to its neighbor. As their power signal is low, message losses and

corruption of messages frequently occur in the network. This problem can be solved

by inserting a new attribute in the Neighbor Allocation Table, 1 i.e., in NAT

representing the current strength of the power signal of the neighbors of a node. A

node can periodically broadcast HELLO messages containing the current power

level. By checking the NAT, a node can heuristically transmit or forward messages

to the best node.

A detail analysis of all possible misbehavior of unconventional nodes in

untrusted environment and their concrete solutions while assigning conflict-free

unique IP address is the primary concern of our future work.

9 Conclusion

This paper presents a new, efficient and scalable autoconfiguration protocol for

MANET where topology can be changed frequently. Distributed Duplicate-IP

Detection Servers (DDSs) are used to ensure the uniqueness of chosen IP addresses.

DAD algorithm is run for only one hop to acquire unique temporary IP address. Grid

based quad tree hierarchy is used to distribute DDSs evenly across the MANET. So,

there is no leader election and allocation of IP address state information.

The special characteristics of the proposed protocol are summarized as follows:

1. The protocol handles problems of turning on more than one node concurrently

during bootstrapping which is described in Sect. 4.1.

2. The protocol is highly scalable. The causes of its scalability are:

a. No node is a single point of failure or bottleneck–the workload related to

address assignment and duplicate IP address detection service is distributed

evenly over all the nodes in the network.

b. The storage and communication cost of address assignment scheme as well

as the DDSs size grow as a small valued function of the total number of

nodes. The correctness of this characteristic also has been verified in Sect.

6.3.

424 J Netw Syst Manage (2011) 19:394–426

123

3. The problem of two or more nodes choosing conflicting IP address is also

intelligently resolved as described in Sect. 4.

4. The proposed protocol is consistent with frequent topology changes.

Last but not the least, the proposed autoconfiguration protocol may be extended

in future to cope with un-trusted ad hoc environment, since the present solution is

vulnerable to the attack like Denial of Services (DoS) [26] and others by malicious

nodes.

Acknowledgments The authors would like to thank the anonymous reviewers and the editor for their

helpful suggestions and recommendations.

References

1. Hussain, S.R., Saha, S., Rahman, A.: An efficient and scalable address autoconfiguration in mobile ad

hoc networks. In: Proceedings of the 8th International Conference on Ad-Hoc, Mobile and Wireless

Networks (ADHOC-NOW’09), Spain, LNCS 5793, pp. 152–165. Springer (2009)

2. Droms, R.: Dynamic Host Configuration Protocol. http://www.ietf.org/rfc/rfc2131.txt (1997)

3. Narten, T., Nordmark, E., Simpson, W.: Neighbor discovery for IP version 6 (IPv6). In: Network

Working Group RFC 2461 (1999)

4. Thomson, S., Narten, T.: IPv6 stateless address autoconfiguration, December 1998. IETF RFC

2462—Standards Track (1998)

5. Guttman, E., Cheshire, S.: Zero Configuration Networking Group. http://www.ietf.org/html.charters/

zeroconf-charter.html. Cited 21 (2003)

6. Perkins, C.E., Malinen, J.T., Wakikawa, R., Royer, E.M., Sun, Y.: IP address autoconfiguration for ad

hoc networks. Draft-ietf-manet-autoconf-01.txt (2001)

7. Nesargi, S., Prakash, R.: MANETConf: configuration of a host in mobile ad hoc network. In:

Proceedings of IEEE INFOCOM, New York, USA (2002)

8. Mohsin, M., Prakash, R.: IP address assignment in a mobile ad hoc network. In: Proceedings of IEEE

MILCOM, Anaheim, USA (2002)

9. Weniger, K., Zitterbart, M.: IPv6 autoconfiguration in large-scale mobile ad-hoc networks. In:

Proceedings of European Wireless, Italy (2002)

10. Zhou, H., Ni, L.M., Mutka, M.W.: Prophet address allocation for large scale MANETs. In: Pro-

ceedings of IEEE INFOCOM, USA (2003)

11. Vaidya, N.H.: Weak duplicate address detection in mobile ad hoc networks. In: Proceedings of the

Third ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 206–216.

ACM Press (2002)

12. Park, J., Kim, Y., Park, S.: Stateless address autoconfiguration in mobile ad hoc networks using site-

local address, 2001, internet draft: draft-park-zeroconf-manetipv6-00.txt (2001)

13. Tayal, A., Patnaik, L.: An address assignment for the automatic configuration of mobile ad hoc

networks. Pers. Ubiquitous Comput 8(1), 47–54 (2004) (Springer)

14. Kim, H., Kim, S. C., Yu, M., Song, J. K., Mah, P.: DAP: dynamic address assignment protocol in

mobile ad-hoc networks. In: Proceedings of IEEE International Symposium on Consumer Electronics

(ISCE’07), pp. 1–6 (2007)

15. Thoppian, M., Prakash, R.: A distributed protocol for dynamic address assignment in mobile ad hoc

netorks. IEEE Trans. Mobile Comput. 5(7), 4–19 (2006)

16. Sheu, J.P., Tu, S.H., Chan, L.H.: A distributed IP address assignment scheme for ad hoc networks. In:

Proceedings of the 11th International Conference on Parallel and Distributed Systems (ICPADS’05),

vol 1, pp. 439–445 (2005)

17. Xu, T., Wu, J.: Quorum based IP address autoconfiguration in mobile ad hoc networks. In: Pro-

ceedings of International Conference on Distributed Computing Systems Workshops (ICDCSW’07)

(2007)

J Netw Syst Manage (2011) 19:394–426 425

123

http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/html.charters/zeroconf-charter.html
http://www.ietf.org/html.charters/zeroconf-charter.html

18. Ancillotti, E., Bruno, R., Conti, M., Pinizzotto, A.: Dynamic address autoconfiguration in hybrid ad

hoc networks, vol. 5, pp. 300–317. Pervasive and Mobile Computing, Elsevier. doi:10.1016/

j.pmcj.2008.09.008) (2009)

19. Fazio, M., Villari, M., Puliafito, A.: IP address autoconfiguration in ad hoc networks: design,

implementation and measurements. Comput. Netw. 50(7), 898–920 (2006) (Elsevier)

20. Weniger K.: PACMAN: passive autoconfiguration for mobile ad hoc networks. IEEE J. Selected

Areas Commun. (JSAC) 23(3), 507–519 (2005)

21. Sun, Y., Royer, E.M.: Dynamic address configuration in mobile ad hoc networks. In: Proceedings of

Wireless Communications & Mobile Computing, pp. 315–329 (2004)

22. Fernandes, N.C., Moreira, M.D.D., Duarte, O.C.M.B.: An efficient filter-based addressing protocol

for autoconfiguration of mobile ad hoc networks. In: Proceedings of IEEE INFOCOM. Rio de

Janeiro, Brasil

23. Li, J., Jannotti, J., Cuoto, D.D., Karger, D., Morris, R.: A scalable location service for geographic ad

hoc routing. In: Proceedings of the ACM/IEEE International Conference of Mobile Computing and

Networking (MOBICOM’00), pp. 120–130 (2000)

24. Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc networks. In: Pro-

ceedings of ACM MSWiM, USA, pp. 61–68 (2000)

25. Lou, W., Wu, J.: On reducing broadcast redundancy in ad hoc wireless networks. IEEE Trans. Mobile

Comput. 1(2):111–123 (2002)

26. Zhang, Y., Lee, W.: Intrusion detection in wireless ad hoc networks. In: Proceedings of the ACM/

IEEE International Conference of Mobile Computing and Networking (MOBICOM’00),

pp. 275–283. Boston, MA (2000).

Author Biographies

Syed Rafiul Hussain received his B. Sc. in Computer Science and Engineering from the department of

Computer Science and Engineering (CSE), Bangladesh University of Engineering and Technology

(BUET), Dhaka, Bangladesh in 2009. Currently he is working as a full time faculty member in the

Department of CSE, Ahsanullah University of Science and Technology (AUST) and as a visiting faculty

member in the Department of CSE, BUET. His research interests include mobile ad-hoc and sensor

networks, peer-to-peer computing, distributed systems, network security and data mining.

Subrata Saha received his B. Sc. in Computer Science and Engineering from the department of

Computer Science and Engineering (CSE), Bangladesh University of Engineering and Technology

(BUET), Dhaka, Bangladesh in 2009. He is working as a Software Engineer at Tiger IT Bangladesh

Limited. His research interests include mobile ad-hoc and sensor networks, cloud computing, computer

systems and software engineering.

Ashikur Rahman received his B. Sc. and M. Sc. degrees in Computer Science and Engineering from the

department of Computer Science and Engineering (CSE), Bangladesh University of Engineering and

Technology (BUET), Dhaka, Bangladesh in 1998 and 2001, respectively. He received his PhD in 2006

from the Department of Computing Science, University of Alberta, Canada. In the year of 2007, after

finishing his PhD, he worked as a postdoctoral researcher at the Simon Fraser University, Canada. From

the year of 2008 to 2010, he worked as a faculty member in the Department of CSE, BUET. Currently he

is working as a postdoctoral researcher at the department of Computer Science, University of Calgary,

Canada. His research interests include ad-hoc and sensor networks, social networks, peer-to-peer

computing, swarm intelligence, back-end compiler optimization and neural networks.

426 J Netw Syst Manage (2011) 19:394–426

123

http://dx.doi.org/10.1016/j.pmcj.2008.09.008
http://dx.doi.org/10.1016/j.pmcj.2008.09.008

	SAAMAN: Scalable Address Autoconfiguration in Mobile Ad Hoc Networks
	Abstract
	Introduction
	Related Works
	Preliminaries
	Geographic Forwarding
	The Architecture
	Selection Process of Duplicate-IP Address Detection Server

	Autoconfiguration Protocol
	Temporary IP Address Assignment
	Real IP Address Assignment
	How Many DDSs are Reasonably Needed

	Some Critical Issues
	Concurrent Initialization
	Dynamically Changing DDSs
	Node(s) Having No Neighbor(s)
	Departure of Nodes
	Moving From One Square to Another Square
	Message Losses
	Network Partitioning and Merging

	Simulation
	Simulation Setup
	Performance Metrics
	Simulation Results

	Future Works
	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

