
DetAnom: Detecting Anomalous Database Transactions
by Insiders

Syed Rafiul Hussain
Dept. of Computer Science

Purdue University, USA
hussain1@purdue.edu

Asmaa Sallam
Dept. of Computer Science

Purdue University, USA
asallam@purdue.edu

Elisa Bertino
Dept. of Computer Science

and Cyber Center
Purdue University, USA
bertino@purdue.edu

ABSTRACT
Database Management Systems (DBMSs) provide access con-
trol mechanisms that allow database administrators (DBA)
to grant application programs access privileges to databases.
However, securing the database alone is not enough, as at-
tackers aiming at stealing data can take advantage of vul-
nerabilities in the privileged applications and make applica-
tions to issue malicious database queries. Therefore, even
though the access control mechanism can prevent applica-
tion programs from accessing the data to which the pro-
grams are not authorized, it is unable to prevent misuse of
the data to which application programs are authorized for
access. Hence, we need a mechanism able to detect mali-
cious behavior resulting from previously authorized applica-
tions. In this paper, we design and implement an anomaly
detection mechanism, DetAnom, that creates a profile of the
application program which can succinctly represent the ap-
plication’s normal behavior in terms of its interaction (i.e.,
submission of SQL queries) with the database. For each
query, the profile keeps a signature and also the correspond-
ing constraints that the application program must satisfy to
submit that query. Later in the detection phase, whenever
the application issues a query, the corresponding signature
and constraints are checked against the current context of
the application. If there is a mismatch, the query is marked
as anomalous. The main advantage of our anomaly detection
mechanism is that we need neither any previous knowledge
of application vulnerabilities nor any example of possible at-
tacks to build the application profiles. As a result, our De-
tAnom mechanism is able to protect the data from attacks
tailored to database applications such as code modification
attacks, SQL injections, and also from other data-centric
attacks as well. We have implemented our mechanism with
a software testing technique called concolic testing and the
PostgreSQL DBMS. Experimental results show that our pro-
filing technique is close to accurate, and requires acceptable
amount of time, and that the detection mechanism incurs
low run-time overhead.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CODASPY’15, March 2–4, 2015, San Antonio, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3191-3/15/03 ...$15.00.
http://dx.doi.org/10.1145/2699026.2699111 .

Categories and Subject Descriptors
H.2.7 [Database Management]

General Terms
Security

Keywords
Database, Insider Attacks, Anomaly Detection, Application
Profile, SQL Injection

1. INTRODUCTION
Data stored in databases is often critical to the organiza-

tion’s operations and sensitive, for example with respect to
privacy. Therefore, securing data stored in a database is a
critical security requirement. Data must be protected not
only from external attackers, but also from users within the
organizations [2]. A wide range of institutions from govern-
ment agencies (e.g., military, judiciary etc.) to commercial
enterprises are witnessing attacks by insiders at an alarm-
ing rate. The most important objective of these insiders
is to either exfiltrate sensitive data (e.g., military plans,
trade secrets, intellectual property, etc.) or maliciously mod-
ify the data for deception purposes or for attack prepara-
tion [1, 6, 11].

There are a number of facts that make the prevention of
insider attacks more challenging compared with other con-
ventional (external) attacks [3]. First, insiders are allowed
to access machines and services inside the organization net-
works as they possess valid credentials. Second, the actions
of insiders originate at a trusted domain within the network,
and thus are not subjected to thorough security checks in the
same way as external actions are. For instance, there is often
no internal firewall within the organization network. Third,
insiders are often highly trained computer experts, who have
knowledge about the internal configuration of the network
and the security and auditing control deployed. Therefore,
they may be able to circumvent conventional security mech-
anisms.

Protecting data from insider threats requires combining
different techniques. One important such technique is rep-
resented by the access control system that is implemented as
part of the database management system (DBMS) code. An
access control system allows one to specify which users/ap-
plications can access which data for which purpose. In addi-
tion to the access control system implemented as part of the
DBMS, applications may also perform their own“application-
level” access control in order to implement more complex

25

access control policies. In such cases, accesses by users to
the data stored in a database is mediated by the application
programs. However, whereas the use of DBMS-level and
application-level access control mechanisms provides a first
layer of defense against insider threats, these mechanisms
are unable to protect against malicious insiders that have
access to the applications and can thus modify the code to
change the queries issued to the database and also modify
the logics of the application-level access control.

In order to address the above problem, one possible ap-
proach is to analyze the data access patterns of the applica-
tion to create profiles on legitimate activities and then use
at run-time these profiles to detect anomalous accesses by
application programs.

The design of such an anomaly detection system is chal-
lenging, as the system should fulfill the following require-
ments:
• It should require minimal modifications to the code of

the application program and the DBMS.
• It should not introduce significant delays that may neg-

atively impact the performance.
• It should have the least possible number of false positives

and false negatives.
In this paper, we propose DetAnom, an anomaly detection

mechanism able to identify malicious database transactions
that addresses above requirements. DetAnom consists of
two phases: the profile creation phase and the anomaly de-
tection phase. In the first phase, we create a profile of the
application program that can succinctly represent the appli-
cation’s normal behavior in terms of its interaction (i.e., sub-
mission of SQL queries) with the database. For each query,
we create a signature and also capture the corresponding
preconditions that the application program must satisfy to
submit the query. Note that an application program may ex-
ecute different query sequences depending on different values
of the input parameters. Hence, the profile of the application
needs to consider all possible execution paths that lead to in-
teractions with the database. Each query in the application
belongs to one of these paths and has a set of preconditions
(i.e., constraints) in order to be issued.

A major issue in our approach is that exploring all possible
execution paths of an application program requires identi-
fying all possible combinations of program inputs, which is
sometimes not feasible. As a result, the unexplored paths
introduce incompleteness in the application profile. The
higher the number of paths explored, the more complete and
accurate an application profile is. Hence, to make our profil-
ing technique close to complete and accurate, we adopt con-
colic testing [19] [8], a widely used software testing method-
ology which ensures good coverage of the created profile. As
the program may have different behaviors for different val-
ues of input parameters, our approach with concolic testing
generates inputs automatically to explore all such program
behaviors. Later in the anomaly detection phase, whenever
the application issues a query, the corresponding signature
and constraints are checked against the current context of
the application. If there is a mismatch, the query is consid-
ered as anomalous. However, depending on the number of
paths covered in concolic execution, the anomaly detection
phase follows either the ‘strict’ or the ‘flexible’ policy. If
the number of execution paths covered in the application
profile is high, the anomaly detection phase verifies a query
with more confidence and thus enforces the ‘strict’ policy.

On the other hand, if the profile fails to cover a minimum
number of execution paths, the anomaly detection phase is
comparatively less confident and thus enforces the ‘flexible’
policy. The ‘strict’ policy raises an alert immediately upon
detecting an anomalous query, whereas the ‘flexible’ policy
raises a flag for that query and observes any further query.
The main advantage of our anomaly detection mechanism is
that we need neither any previous knowledge of application
vulnerabilities nor any example of possible attacks to build
the application profiles.

The rest of the paper is organized as follows: Section 2
presents relevant preliminary concepts. Section 3 provides
an overview of our system model. Section 4 and 5 describe
the profile creation phase and the anomaly detection phase,
respectively. Section 6 discusses implementation details.
Section 7 presents an experimental evaluation of DetAnom.
Section 8 surveys related work. Section 9 concludes the pa-
per with a discussion on the future work.

2. PRELIMINARIES
In this section, we present some concepts that are used in

this paper.
Software Testing is the process of examining the qual-

ity of a software product. It involves monitoring the actual
program execution in the hope of observing unexpected be-
haviour (e.g., wrong output values, program crashes or early
termination) which implies the existence of bugs. It can also
give a perspective about the security and risks in the product
or service under test. One of the main challenges that arises
in software testing is the capability of testing all possible
program inputs of an application to achieve high code cov-
erage. Concolic testing is one of the widely used techniques
in addressing this challenge.

Concolic Execution is a program analysis technique
[8, 13, 19] that explores all possible execution paths of a
program by acting according to the following steps. The
program to be tested is first concretely executed with some
initial random inputs. Then the concolic execution engine
examines the branch conditions along the executed path’s
control-flow and uses a decision procedure to find an input
that would reverse the branch conditions from true to false or
vice-versa. This process is repeated to discover more inputs
that trigger new control-flow paths, and thus more program
states are tested. This technique is particularly useful for
the automatic generation of high-coverage test inputs and
for software vulnerability discovery.

3. SYSTEM MODEL
In this section, we introduce the DetAnom architecture

and the adversary model that we consider.

3.1 DetAnom Architecture
The system architecture consists of several modules, sup-

porting the two phases of DetAnom.
Profile creation phase: Figure 1 shows the modules sup-

porting the profile creation phase and interactions between
them. This phase starts with providing the application pro-
gram as input to the concolic execution (CE) module which
first instruments the application. Next, the CE module ex-
ecutes the instrumented application for a number of times
and with different inputs, until all possible execution paths
of the program are explored. Each time the application pro-

26

Figure 1: System architecture for profile creation

gram issues a query to the database, the constraint extrac-
tor (CEx) in the profile builder (PB) module extracts the
constraints that lead the application program to follow the
current path. These constraints compose a part of the ap-
plication profile. On the other hand, each query submitted
to the database is also forwarded to the PB module where
the signature generator (SG) sub-module generates the sig-
nature of that query. Section 4 discusses details about the
CEx and SG sub-modules. Finally, the PB module binds
the query signature with its corresponding constraints and
inserts this record into the application profile.

The database used in this phase is a test database that
may be updated according to the requirement of concolic
execution. This test database is necessary in the profile cre-
ation phase since the results returned by the database could
be used in control-flow decisions later in the program.

Figure 2: System architecture for anomaly detection

Anomaly detection phase: The main modules support-
ing the anomaly detection phase are: the anomaly detec-
tion engine (ADE), the query interceptor (QI), the signature
comparator (SC), and the target database as shown in Fig-
ure 2. The target database stores the data to be protected
from insiders. The application interacts with this database
through SQL queries. However, in this phase, any query is-
sued by the application does not reach the target database
directly; it is instead intercepted by the QI and forwarded
to the ADE for anomaly detection. The ADE also includes
the SG sub-module in order to generate the signature of the
received query. Upon receiving the query, the ADE checks
whether the current inputs of the program satisfy the con-
straints of some possible execution paths. If the constraints

are satisfied, the SC compares the signature associated with
the satisfied constraint to that of the received query . If
there is a match, the query is considered legitimate. This
information is then sent to the QI to let it forward the le-
gitimate query to the target database for execution. On the
other hand, if the signatures do not match, the ADE module
considers the query as anomalous and raises an alert.

3.2 Adversary Model
In our DetAnom system, we assume that every component

involved in the profile creation phase is trusted. However,
we assume that at run-time the application program can be
tampered with and thus become untrusted. Therefore, we
assume that while the program is executing, the program
may issue a query that:

(a) has never encountered in the profile creation phase,
i.e., the query does not belong to the application at all;

(b) belongs to the application but is not relevant to the
current execution path;

(c) is relevant to the current execution path, but the pro-
gram input variables do not satisfy that query’s correspond-
ing constraints.

4. PROFILE CREATION PHASE
In the profile creation phase, the application program in-

teracts with the test database through SQL queries. We
represent the queries internally in a specific format which
we refer to as signatures. Queries’ signatures and corre-
sponding constraints are used to build the profile of the ap-
plication. For each query, we record its signature and con-
straints, and refer to this pair as query record (QR). All QRs
of the program are organized in a hierarchical data structure
which represents the control-flow of the application. We re-
fer to this data structure as the application profile. In this
section, we discuss the format of the query signatures and
constraints, and the procedure for building the application
profile.

4.1 Query Signature Representation
In our system, we consider standard SQL commands of

types SELECT, INSERT, UPDATE, and DELETE. For instance,
the format of a SELECT command is:

SELECT [DISTINCT] {TARGET-LIST}

FROM {RELATION-LIST}

WHERE {QUALIFICATION}

Our system internally represents an SQL query as a sig-
nature of the form (c, t, r, q, n). Here, c represents the type
of the SQL command which takes one of the values: ‘1’, ‘2’,
‘3’, and ‘4’ in case of SELECT, INSERT, UPDATE, and DELETE

commands, respectively. The second field, t, is a list that
contains the identifiers (IDs) of the attributes projected in
the query, i.e., the attributes that appear in the query re-
sult; this information is extracted from the TARGET-LIST of
the query. Attributes are identified by two values: the ID of
the table that the attribute belongs to and the ID of the at-
tribute relative to that table. The third field, r, is a list that
contains the IDs of the tables being accessed in the query,
i.e., the tables that appear in the RELATION-LIST. The next
field, q, is a list of IDs of attributes referenced in QUALIFI-

CATION which corresponds to the WHERE clause of the query.
And the last field, n, in the signature denotes the number

27

Figure 3: An example of database application

1 public static void salaryAdjustment(int profit, int
investment){

2 Statement s;
3 ...
4 int employee_count = 0;
5 if(profit >= 0.5 * investment){
6 String query1 = "SELECT employee_id,

work_experience FROM WorkInfo WHERE
work_experience > 10";

7 resultSet1 = s.executeQuery(query1);
8 resultSet1.last();
9 if(resultSet1.getRow() > 100){

10 String query3 = "SELECT employee_id FROM
WorkInfo WHERE work_experience > 10 AND
performance = ’good’";

11 resultSet3 = s.executeQuery(query3);
12 ... // do other operations
13 } else{
14 String query2 = "UPDATE WorkInfo SET salary

= salary * 1.2";
15 s.executeUpdate(query2);
16 }else{
17 String query4 = "SELECT p.employee_name FROM

PersonalInfo p, WorkInfo w WHERE
performance = ’poor’ AND p.employee_id =
w.employee_id";

18 resultSet2 = s.executeQuery(query4);
19 ... // do other operations
20 }
21 }

of predicates in the WHERE clause. Note that all attributes of
the signature are extracted by parsing the query.

As an example, consider the relation schema in Table 1.
ID’s of tables and attributes are as shown in the table. Now,
consider the query:

SELECT employee_id, work_experience

FROM WorkInfo

WHERE work_experience > 10;

The signature of the above query is as follows: {1, {{200,

1}, {200, 2}}, {200}, {{200, 2}}, 1}

We explain this signature construction in order from left to
right. The leftmost 1 represents the SELECT command. {200,
1}, and {200, 2} represent the IDs of attributes employee_id
and work_experience, respectively. 200 represents the ID of
the table WorkInfo. {200, 2} represents the attribute used
in the WHERE clause, i.e, work_experience. The rightmost 1
corresponds to the number of predicates in WHERE clause.

Table 1: Relation schema
Table ID Table name Attribute ID Attribute name Type

100 PersonalInfo 1 employee_id varchar(10)

2 employee_name varchar(50)

200 WorkInfo 1 employee_id varchar(10)

2 work_experience number

3 salary number

4 performance varchar(20)

4.2 Constraint Extraction
This section describes how the constraints for executing a

query are extracted during the profile creation phase. The

CE module takes the application program as input and in-
struments it to log each operation that may affect a symbolic
variable value or a path condition. This module then exe-
cutes the program concretely with some random input. In
order to explore other paths, it examines the branch condi-
tions (i.e., constraints) along the executed path, and uses a
constraint solver to find inputs that would reverse the branch
conditions. This concolic execution is repeated for a number
of times until all the execution paths are explored. Note that
the instrumented program may issue queries along some of
these execution paths. The issued queries are forwarded to
both the PB and the test database. Upon receiving a query,
the CEx sub-module in the PB extracts the constraints that
are prerequisite to execute that query.

We now explain the constraint extraction procedure by us-
ing as example the application program shown in Fig. 3. The
salaryAdjustment program takes two inputs: profit, and
investment. Depending on the values of inputs and results
returned from the database, this application program issues
different sets of queries. At first, assume that the CE mod-
ule sets the values of profit, and investment to 60000 and
100000, respectively. When the program execution reaches
the if statement at line 5, it encounters a branch condition
that consists of these input variables. Assume that the CE
module denotes the profit, and investment variables as x1

and x2, respectively. It then represents the constraint of the
if branch as c1, using x1 and x2, as shown in Table 2. As
the initial inputs satisfy this constraint, the program enters
into the if branch. It then issues query1 at line 7 along its
current execution path. Here, the constraint for query1 is
the same as the condition for the if branch, i.e, c1. Upon
receiving this query, the CEx sub-module extracts this con-
straint from the CE module and stores for use in profile
creation.

4.3 Profile Creation
In this section, we show how the application profile is

created using QRs, which are composed of query signatures
and corresponding constraints. The definition of application
profile is as follows:

Application Profile (AP): The profile of an application
program P is a directed graph T (VP , EP). Each node vi ∈
VP is a QR of query qi represented as 〈sig(qi), ci〉, where
sig(qi) is the signature of qi, and ci is the set of constraints
to execute qi. An edge eij ∈ EP denotes that the query qj
is executed after query qi and hence, node vj is a child of
node vi.

To illustrate the profile creation procedure, we continue
with the examples given in Section 4.1 and 4.2.

As query1 is issued by the program, it is then passed to
the PB where the SG sub-module generates the query sig-
nature as shown in Section 4.1. The CEx sub-module also
extracts the constraint c1 as described in Section 4.2. The
PB module now generates the record of query1 as QR1 =
〈sig(query1), c1〉 and inserts this record as the first child of
the root of AP as shown in Fig. 4(a).

Afterwards, when the program reaches the if statement at
line 9, the CE module identifies a branch condition that de-
pends on the results returned by query1. This is represented
as a database constraint, c2, as in Table 2. Now assume that
the test database returns less than 100 rows of data to the
application program for query1. In this case, the program
jumps to the else branch at line 13 and issues query2. So,

28

Figure 4: Steps of profile graph construction

Table 2: Constraints for queries
c1 arithmetic: 1.0 x1 − 0.5 x2 >= 0.0
c2 database: x3 ≤ 100.0

c3 database: x3 > 100.0

c4 arithmetic: 1.0 x1 − 0.5 x2 <= −1.0

the precondition for query2 to be executed is same as the
condition of the else branch at line 13. This constraint,
c2, is extracted by the CEx as shown in Table 2, where x3

denotes for resultSet1.getRow(). The PB module then
creates the record of query2 as QR2 = 〈sig(query2), c2〉 and
inserts it in the AP as a child of QR1 as shown in Fig. 4(b).
Table 4 presents the signature of query2, i.e., sig(query2).

Since for the current execution there is no further paths
to explore after line 15, the CE module backtracks the exe-
cution to the if statement at line 9 and negates the branch
condition to explore the if branch. To do so, the CE mod-
ule inserts some random records into the database tables
PersonalInfo and WorkInfo so that execution of query1 re-
turns more than 100 rows, and thus explores the if branch.
Along this path when the program issues query3, the CEx
sub-module captures the corresponding constraint which is
same as the condition of the if branch at line 9. This con-
straint is represented as c3 (shown in Table 2). The AP is
also updated as in Fig. 4(c) by inserting the query record
QR3 = 〈sig(query3), c3〉 as another child of QR1. Note that,
insertion or deletion of records to the test database in the
profile creation phase do not have any impact on the target
database as these operations are executed only for extracting
the database constraints properly. Finally, the CE module
backtracks the execution of the program to the if statement
at line 5, negates the branch condition, and uses a constraint
solver to find values of profit and investment variables so
that the program execution can explore the other branch,
i.e., the else branch at line 16. Assume that it sets profit

and investment variables to 49999 and 100000, respectively
and enters the else branch at line 16. Executing along this
path when the program issues query4, the CEx extracts of
the constraint c4, as shown in Table 2. The PB inserts
QR4 = 〈sig(query4), c4〉 to the AP as a child of the root as
shown in Fig. 4(d). At this point, since the CE module has
completed exploring all execution paths, the profile creation
phase ends.

5. ANOMALY DETECTION PHASE
We now describe how application program profiles are

used to distinguish between legitimate and anomalous database
queries. The steps of the anomaly detection procedure are
presented in Algorithm 1.

Table 3: Query signatures
Query Signature

query1 {1, {{200, 1}, {200, 2}}, {200}, {{200, 2}}, 1}

query2 {2, {{200, 3}}, {200}, {∅}, 0}

query3 {1, {{200, 1}}, {200}, {{200, 2}, {200, 4}}, 2}

query4 {1, {{100, 2}}, {100, 200}, {{200, 4}, {100, 1}, {200, 1}}, 2}

Table 4: Query records
Query record Contents

QR1 〈sig(query1), c1〉
QR2 〈sig(query2), c2〉
QR3 〈sig(query3), c3〉
QR4 〈sig(query4), c4〉

5.1 Detection of Anomalous Queries
In the anomaly detection phase, whenever the application

program issues a query, the QI module intercepts the query
and forwards it to the ADE module. The reason is that our
system does not allow any query to reach the target database
without verifying whether the query is anomalous or not.

When an application program starts executing in the ano-
maly detection phase, the ADE module sets the root node of
the AP as the current parent node (vp). Upon receiving the
first query along an execution path of the program, the ADE
considers all the children of vp as candidate nodes. The ADE
then takes the inputs from the executing application and for
each candidate node it verifies whether the inputs satisfy the
constraint in the QR. If the inputs satisfy constraint ci, the
program is expected to execute the query which is associ-
ated with the query record QRi containing the satisfied ci.
As next step, the SG sub-module generates the signature of
the received query and the SC sub-module compares it with
the signature stored in QRi, i.e., sig(queryi). For a legiti-
mate query, the signatures match. The verification outcome
is then passed to the QI module which then sends the legit-
imate query to the target database for execution.

For subsequent queries issued by the program, the ADE
module considers the QR of the most recently executed
query as the current parent node, and verifies the signature
and corresponding constraints in a similar way as described
above.

Now consider the case of an anomalous query. In this
case, the signature for that query generated by the SG sub-
module will not match that in the QR for which the con-
straints are satisfied by the application program. As a re-
sult, the SC sub-module raises a flag and the ADE takes
next steps based on either the ‘strict’ or the ‘flexible’ policy
discussed in what follows.

5.1.1 Strict policy
In the profile creation phase, we use concolic execution to

explore all possible paths of an application program. This
technique statically estimates the number of possible branches
in a program. Then while executing the program, it sets
different values to the inputs and thus tries to explore new
paths. However, it uses a bounded depth-first strategy, i.e.,
bounded DFS. With this searching strategy, there is a trade-
off between the exploration of other execution paths and
termination of the current path if its length is significantly
large. If the length of an execution path exceeds the bound
of the DFS, it stops that particular execution, and searches
for new paths. In this case, the concolic execution leaves

29

Algorithm 1 Anomaly Detection

1: Input: Application Profile (AP)
2: vp = root of AP
3: while the program is executing do
4: if a query q is issued then
5: SG generates sig(q)
6: for each child vi of vp do
7: if ci is satisfied then
8: SC compares sig(q) to sig(queryi)
9: if signatures match then

10: /* q is a legitimate query */
11: let the QI forward q to database
12: vp = vi
13: else
14: /* q is an anomalous query */
15: anomaly = 1
16: break
17: end if
18: end if
19: end for
20: if anomaly == 1 || no ci is satisfied then
21: if policy is strict then
22: raise an ALERT
23: else if policy is flexible then
24: if q is flagged more than k times then
25: raise an ALERT
26: else
27: raise a flag
28: end if
29: end if
30: end if
31: end if
32: end while

some large execution paths unexplored that may contain
queries. In the strict policy, we set the bound of the DFS
high enough so that the concolic execution can explore al-
most all possible paths of the program and cover all the
branches that are estimated statically. As a result, the pro-
file of the application program gets close to be complete and
the ADE module becomes strong enough to distinguish be-
tween legitimate and anomalous queries. So in this case,
when the signature of an input query does not match, the
ADE module identifies that query as anomalous with high
confidence and raises an alert signal. This information is
forwarded to the QI module.

5.1.2 Flexible policy
If the bound of the DFS for the concolic execution is not

high enough, the profile creation phase may leave some large
paths unexplored. For each query issued along an execution
path that is within the DFS bound, if the SC does not find
a match for its signature or the constraints are not satisfied,
the ADE considers that query as anomalous. However, if
the issued query is on an execution path that exceeds the
DFS bound, the SC does not find a match for its signature.
In this case, the ADE raises a flag for that query and asks
the QI to drop it. If a particular query is flagged for more
than k times (k is a threshold set in the ADE module), this
module raises an alert signal, and requests the security offi-
cer (or some other trusted user) to check whether the query
is actually anomalous or legitimate. If the query is assessed
as anomalous, it is kept in the black-list of the QI so that
future occurrences of such query are blocked automatically.
If the query is assessed as legitimate, the AP is updated
accordingly with its QR.

Also, consider the case in which the application program is
compromised and its control-flow is hijacked. In this case, if
some insider issues a query that belongs to the program but
is not legal in the current execution path, the application
inputs will fail to satisfy the constraints of any candidate
node. In this case, the ADE will take an action according
to the policy it adopts, as described above.

5.2 Case studies
In this section we present some case studies to illustrate

how the ADE module works in the anomaly detection phase.
We assume that the values of profit and investment vari-
ables are set to 60000 and 100000, respectively. We consider
the following cases.

5.2.1 Execution of query1 and query2

According to the values of input variables, the application
program is eligible to issue query1. So in the anomaly detec-
tion phase, upon receiving the issued query1, the ADE mod-
ule takes the program inputs to check whether they satisfy
the constraints of either QR1 or QR4. As c1 is satisfied, the
SG sub-module generates the signature of the input query
and the SC sub-module compares it with the signature part
of QR1. The match is positive and hence query1 is assessed
as non-anomalous. Now assume that the number of records
returned by query1 is less than 100. In this case, the con-
straint c2 is satisfied and the attempt to execute query2 is
considered non-anomalous because the signature of query2
matches to that of the QR2.

5.2.2 Execution of query1 and query3

In this case, query1 is executed legitimately as described
in the previous case. Afterwards, when the program is-
sues query3, the SC sub-module finds that the signatures
of query3 and that of the expected query do not match. As
a result, the ADE module raises an alert indicating query3
as anomalous.

5.2.3 Execution of a query that does not belong to
the program

If a query is issued in the anomaly detection phase that is
never encountered in the profile creation phase, the signature
of that query does not match with any of the query records.
In this case, the ADE module raises an alert or a flag based
on the policy (strict or flexible) it adopts.

5.2.4 SQL injection attacks
Our approach is also able to detect SQL injection attacks.

As these attacks typically modify the queries by adding new
predicates, they can be easily detected by our anomaly de-
tection mechanism because of its ability to profile the ex-
pected queries and compare them with the actual queries.
We illustrate the detection of SQL injections with a sam-
ple application program. Such program has the function of
displaying the medical records of an authenticated signed
user. The user is authenticated by entering his username

and password. The legitimate query execution would look
like:

1 username = readInputUser();
2 password = readInputPassword();
3 SELECT * FROM MedicalRecords WHERE uname = ‘ + username

+ ’ AND password = ‘ + password + ’;

30

If the username is John and the password is Smith, then
the query would be:

SELECT * FROM MedicalRecords WHERE uname = ‘John’

AND password = ‘Smith’;

However, such query is vulnerable to SQL injection at-
tacks by which the attacker can display the medical records
of other users. This can be achieved if the attacker enters in
the password input field the string password = ’ OR uname

= ‘Carl’. If so, the following query would be issued which
would display the medical records of the username Carl to
the attacker.

SELECT * FROM MedicalRecords WHERE uname = ‘John’

AND password = ‘ ’ OR uname = ‘Carl’;

Such a vulnerability exists in any application that allows
the user input to change the structure of an SQL query.
Since SQL injection attacks are based on re-structuring the
SQL query, our mechanism by comparing the query struc-
ture to the query signatures saved in AP is able to detect
changes in the query. More specifically, as we count the
number of predicates of the WHERE clause as part of the
query signature, we are able to detect any additional pred-
icates introduced by SQL injection. In the example above,
the number of predicates is 2 before the injection, and it
becomes 3 after the injection.

5.2.5 Two-step SQL injection attacks
These attacks are also referred to as second-order injec-

tion attacks and represent a complex form of data-centric
attacks. The purpose of these attacks is to create an SQL
injection attack that can be processed at a later time. This
is achieved by injecting malicious input into the database
that is legitimately saved into the database, but will re-
sult in an SQL injection attack at a later time when other
types of queries perform actions on the maliciously inserted
data. To clarify, consider an example of a web application
that registers its users upon using their service. If a mali-
cious user chooses (’ OR ‘1’ = ‘1’) as his username, then
adding this user to the database will execute the SQL query:

INSERT INTO users VALUES (‘ OR ‘1’ = ‘1’);

This is a legitimate query and will not result in an SQL in-
jection attack, and thus the username ’ OR ‘1’ = ‘1’ will
be successfully created. However, if at a later time the ma-
licious user or even the web administrator decides to delete
this account, the executed SQL query is:

DELETE FROM users WHERE uname=‘ ’ OR ‘1’ = ‘1’;

This is when the attack is effective as the query will result
in deleting all the users in the database.

Our AD mechanism will be able to detect this type of
attacks when the SQL injection is about to perform the in-
tended attack action on the database. Consider the example
above. Our AD mechanism will find a mismatch with the
DELETE SQL query signature because of the change in the
number of predicates in the WHERE clause. As a result, the
ADE will assess the execution of such query as anomalous.
Like the case of SQL injection attacks, additional predicates

Figure 5: Profile graph

will result in a mismatch of the SQL injected queries when
compared to the existing query signatures and therefore will
result in the query being identified as anomalous.

6. IMPLEMENTATION
In this section, we discuss the implementation details of

the following components: CEx, SG and AP. In our imple-
mentation, we consider J2EE based application programs
through which an attacker may illegally access the target
database. However, our proposed anomaly detection mech-
anism can be used for other kinds of application programs.
For simplicity of implementation, we use PostgreSQL-9.1.8 [14]
for both test database and target database. These databases
are logically separate but contains identical relation schema.

Constraint Extractor: Our implementation of CEx is
built on top of the JCute concolic testing framework [18].
This framework uses Soot [21] for instrumenting Java class
files and lpsolve for solving linear programs. We instrument
the executeQuery and executeUpdate statements of the ap-
plication program using Soot to insert the instructions for
the invocation of the CEx module. So, whenever a query is
encountered, the CEx first captures the constraints of the
current path from root to the intercepted query. Since CEx
knows the constraints of the most recently executed query
along this path, it extracts only the constraints that are ex-
tension of those of the most recent query and stores them in
the AP along with the signature of the intercepted query.

Signature Generator: We use PostgreSQL-9.1.8 [14]
to implement the SG module. PostgreSQL delivers all is-
sued queries to the parser to generate a query parse tree
using the method exec simple query(). In this method, our
customized function for SG imports necessary query infor-
mation (command, target list, relation list, and qualifiers)
from the parse tree and creates the query signature.

Application Profile: The PB module creates query reco-
rds by combining the query signatures generated from SG
and the constraints extracted by CEx. These records are
stored in a hierarchical data structure at PostgreSQL as
shown in Fig. 5.

7. EXPERIMENTAL EVALUATION
We have evaluated the performance of our proposed De-

tAnom mechanism for both the ‘strict’ and ‘flexible’ poli-
cies. Our experiments have been performed on an Intel(R)
Core(TM) i7-3540M CPU machine (number of core = 2)
with a CPU speed of 3.00 GHz, running Ubuntu-11.10 op-
erating system with 4GB of memory. Since the complete-

31

Table 5: Program constructs
Program Lines Number Number Maximum Number Total Average Average

ID of of nested of for depth of of # of queries # of queries in each # of queries in
(PID) code if-else loops a path branches in a program if-else branch each loop

1 794 30 - 30 32 200 7 -
2 586 20 - 20 22 200 10 -
3 322 10 - 10 12 200 20 -
4 826 30 5 ∞ 32 150 4 7

ness and accuracy of our application profile depend mostly
on the performance of concolic testing [18, 19], we have im-
plemented four different database applications with differ-
ent program constructs to evaluate the performance of De-
tAnom. A detailed overview of these applications is shown
in Table 5.

7.1 Evaluation Metrics
We analyze the performance of our proposed anomaly de-

tection mechanism using the following metrics:
(a) Profile creation time: It is the time required to create

the profile of an application program. We use the JCute [18]
tool to measure the time elapsed for the concolic execution
of the application program.

(b) Branch coverage: It is defined as the ratio of the num-
ber of branches covered in run-time in profile creation phase
to the total number of branches in the program. If there are
total n branches in a program and c branches are covered
among them while creating the profile, the branch coverage
is computed as:

Branch Coverage = c
n
∗ 100%

(c) Run-time overhead: It is defined as the ratio of addi-
tional time required by DetAnom to the time required by the
program to execute without any anomaly detection mecha-
nism. We denote the execution time of a database applica-
tion without DetAnom as t1 and with DetAnom as t2. We
then compute the run-time overhead as follows:

Run-time Overhead = t2−t1
t1
∗ 100%

(d) False positive and false negative: A false positive is a
case in which a legitimate query is evaluated as anomalous
by the detection engine, whereas a false negative means that
an anomalous query is evaluated as legitimate.

Table 6: Different scenarios
Scenario ID Program ID Depth limit

of bounded DFS
1 1 30
2 1 20
3 1 10
4 2 20
5 3 10
6 4 30
7 4 20
8 4 10

7.2 Results
In order to analyze our DetAnom system more rigorously,

we have set different values for the depth of the bounded

Table 7: Profile creation time for different scenarios
Scenario ID Profile creation

time (seconds)
1 324.441
2 130.727
3 55.448
4 137.885
5 67.9425
6 1441.940
7 1148.475
8 755.192

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8

Br
an

ch
 c

ov
er

ag
e

Program scenario

Figure 6: Branch coverage for different scenarios

DFS in concolic execution, which resulted in eight different
scenarios shown in Table 6.

(a) Profile creation time: The amount of time required for
creating the application profile for the eight different scenar-
ios is reported in Table 7. The results show that setting the
depth of the bounded DFS to a higher value takes a longer
time to profile the application. The time elapsed for scenar-
ios 6-8 is comparatively high because these scenarios include
loops in the application program.

(b) Branch coverage: The branch coverage of the profiles
for the eight different scenarios is shown in Fig. 6. Note that
increasing the depth of the bounded DFS also increases the
completeness and accuracy of the profile. For the scenarios
where the depth is set equal to the maximum depth of the
program, the branches are covered 100%. Also for a single
application program, decreasing the depth of bounded DFS
results in a low branch coverage.

(c) Run-time overhead : Fig. 7 reports the run-time over-
head for the eight different scenarios. The run-time over-
heads for these scenarios do not differ to a large extent. The
reason is that the anomaly detection phase takes almost the

32

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8

Ru
n-

tim
e

ov
er

he
ad

Program scenario

Figure 7: Run-time overhead for different scenarios

 0

 20

 40

 60

 80

 100

3 2 1

Fa
lse

 p
os

iti
ve

 ra
te

Program scenario

Figure 8: False positive rate for scenarios 1, 2, 3

same amount of the time in finding a match for each query
issued.

(d) False positive rate: Fig. 8 shows the false positive
rates for scenarios 1-3. In this experiment, false positive
rates decrease with the increase of depth limits of bounded
DFS set by the concolic execution in the profile creation
phase. The higher the depth limit is set by the concolic
execution, the more paths are covered by the application
profile. Hence, scenario 1 covers all execution paths of the
program and thus results in no false positives.

Fig. 9 also shows the false positive rates for scenarios 6-8.
In this experiment, the termination condition of a for loop
in the program is an input variable x, (e.g., for (int i=0;

i<x; i++) {...}). One SQL query is issued from each iter-
ation of this for loop. Hence, in the profile creation phase
the for loop is iterated 30, 20, and 10 times in scenarios 6-8,
respectively. So, in the anomaly detection phase, if the vari-
able x is given the value 32, the number of false positives are
22, 12, and 2, respectively. Hence, it is evident that if the
profile creation phase explores a large number of paths, the
application profile becomes more complete and accurate.

Note that in our experiments we do not find any false
negative as the DetAnom matches exact signature and con-
straints of a query.

8. RELATED WORK
Several approaches have been proposed to protect databases

against malicious application programs. DIDAFIT [12] is
an intrusion detection system that works at the applica-

 0

 20

 40

 60

 80

 100

8 7 6

Fa
lse

 p
os

iti
ve

 ra
te

Program scenario

Figure 9: False positive rate for scenarios 6, 7, 8

tion level. Like our system, DIDAFIT works in two phases:
training phase and detection phase. During the training
phase, database logs are analyzed to generate fingerprints
of the queries found in the log. Fingerprints are regular
expressions of queries with constants in the where-clause re-
placed by place-holders that reflect the data types of the
constants. During the detection phase, input queries are
checked against such fingerprints. Queries that match some
expression in the profiles are considered benign, and anoma-
lous otherwise. DIDAFIT has however some major draw-
backs. First, the system relies only on logs to create program
profiles. There is therefore no guarantee that the log would
contain all legitimate queries. To address this drawback,
the authors propose a technique to generate new signatures
from ones that are similar in all portions and have some
predicates in common. While this solution works in some
cases, the system would not be able to recognize queries
that do not appear in the log. Another problem is that
DIDAFIT does not take into account the control flow and
data flow of the program, i.e., the algorithm neither checks
the correct order of the queries, nor the constants in the
predicates. The approaches proposed by Bertino et al. [4]
and Valeur et al. [20] also analyze training logs for creating
profiles of queries. Therefore they have the same drawbacks
mentioned earlier. These approaches focus on the detec-
tion of web-based attacks like SQL Injection and Cross-Site
Scripting (XSS) attacks and fail to detect other attacks per-
formed through application programs, e.g., code modifica-
tion attacks.

Our previous poster paper [17] outlines some preliminary
ideas to protect against data exfiltration through malicious
modification of the application program. However, the ap-
proach proposed in this paper reduces the performance over-
head by allowing the ADE to simply traverse the AP instead
of concretizing of the symbolic execution tree of the appli-
cation program. Such concretization in the detection engine
results in extra delay when verifying a query. In addition,
our preliminary approach does not cover the combination of
testing-based techniques with program analysis techniques
nor cover implementation and assessment of the proposed
approach. Also our current paper introduces the important
notion of confidence for the profiles. According to the con-
fidence obtained in the profile creation phase, our approach
adopts either the ‘strict’ or the ‘flexible’ policy.

Programs profiling techniques have also been proposed for
many other purposes, such as debugging and collecting us-

33

age statistics [16], monitoring system calls [10] [22] [9], and
enhancing the performance of database applications. For
example, the Pyxis system [5] uses static analysis of appli-
cation code to partition the code into two pieces: one to
be executed on the application server and the other on the
database server, trying to reduce the control transfers and
amount of exchanged data between the two components.

Dasgupta et al. [7] propose static analysis of database ap-
plications that use ADO.net APIs in order to extract fea-
tures of SQL queries, query parameters, and usage of query
results in order to detect SQL injection attacks and poten-
tial data integrity violations. Ramachandra and Sudarshan
have developed DBridge [15], a tool that optimizes the per-
formance of database applications by prefetching query re-
sults. Control-flow and data-flow analysis are used to find
locations in the program where instrumented code can be
added; at program runtime this code sends requests to the
database to prepare results of queries predicted to be sent
by the program at later points.

9. CONCLUSION AND FUTURE WORK
Though access control mechanisms deployed in DBMS are

able to prevent application programs from accessing the data
for which they are not authorized, they are unable to prevent
data misuse caused by authorized application programs. In
this paper, we have proposed an anomaly detection mech-
anism that is able to identify anomalous queries resulting
from previously authorized applications. Our mechanism
builds close to accurate profile of the application program
and checks at run-time incoming queries against that pro-
file. In addition to anomaly detection, our DetAnom mech-
anism is capable of detecting any injections or modifications
to the SQL queries, e.g., SQL injection attacks. We have
implemented DetAnom with JCute and PostgreSQL which
results in low run-time overhead and high accuracy in de-
tecting anomalous database accesses.

We are currently extending our work along several direc-
tions. Our current implementation of DetAnom exploits
the constraints that JCute [18] supports, i.e., arithmetic,
pointer and thread constraints. However, Emmi et al. [8]
propose a concolic testing approach for database applica-
tions which considers the database constraints as discussed
in Section 4.3. We are incorporating these database con-
straints to our current prototype which will enhance the
accuracy and completeness of our anomaly detection mech-
anism. We plan to improve our signature signature gener-
ation scheme by incorporating information about program
constants, variables, logical and relational operators used in
the WHERE clause of a query as this information may enhance
the accuracy of detection. We also plan to enhance the com-
pleteness and accuracy of our profile creation mechanism us-
ing both static and dynamic analysis of the program. In this
approach, we will first analyze the program statically to find
all the execution paths that contain SQL queries and then
guide the concolic execution dynamically so that it does not
leave any paths unexplored.

10. ACKNOWLEDGMENTS
The work reported in this paper has been funded in part

under subcontract to Northrop Grumman Systems Corpora-
tion in support of a contract with Department of Homeland
Security (DHS) Science and Technology Directorate, Home-

land Security Advanced Research Projects Agency, Cyber
Security Division under contract number HSHQDC-13-C-
B0012. The views expressed in this work are those of the au-
thors and do not necessarily reflect the official policy or posi-
tion of the Department of Homeland Security or of Northrop
Grumman Systems Corporation.

11. REFERENCES
[1] Cybersecurity watch survey: How bad is the insider

threat? Technical report, Carnegie Mellon University,
2012. http://resources.sei.cmu.edu/asset_files/
Presentation/2013_017_101_57766.pdf.

[2] E. Bertino. Data Protection from Insider Threats.
Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, San Rafael, 2012.

[3] E. Bertino and G. Ghinita. Towards mechanisms for
detection and prevention of data exfiltration by
insiders: Keynote talk paper. In Proceedings of the 6th
ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’11, pages 10–19,
New York, NY, USA, 2011. ACM.

[4] E. Bertino, A. Kamra, and J. P. Early. Profiling
database application to detect sql injection attacks. In
IEEE International Performance, Computing, and
Communications Conference, IPCCC 2007, pages
449–458, April 2007.

[5] A. Cheung, S. Madden, O. Arden, and A. C. Myers.
Automatic partitioning of database applications.
VLDB Endow., 5(11):1471–1482, July 2012.

[6] M. Collins, D. M. Cappelli, T. Caron, R. F. Trzeciak,
and A. P. Moore. Spotlight on: Programmers as
malicious insiders (updated and revised). Technical
report, Carnegie Mellon University, 2013.
http://resources.sei.cmu.edu/asset_files/

WhitePaper/2013_019_001_85232.pdf.

[7] A. Dasgupta, V. Narasayya, and M. Syamala. A static
analysis framework for database applications. In
Proceedings of the 2009 IEEE International
Conference on Data Engineering, ICDE ’09, pages
1403–1414, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] M. Emmi, R. Majumdar, and K. Sen. Dynamic test
input generation for database applications. In
Proceedings of the 2007 International Symposium on
Software Testing and Analysis, ISSTA ’07, pages
151–162, New York, NY, USA, 2007. ACM.

[9] D. Gao, M. K. Reiter, and D. Song. Gray-box
extraction of execution graphs for anomaly detection.
In Proceedings of the 11th ACM Conference on
Computer and Communications Security, CCS ’04,
pages 318–329, New York, NY, USA, 2004. ACM.

[10] J. T. Giffin, S. Jha, and B. P. Miller. Efficient
context-sensitive intrusion detection. In Proceedings of
the 11th Annual Network and Distributed System
Security Symposium NDSS, 2004.

[11] C. Huth and R. Ruefle. Components and
considerations in building an insider threat program.
Technical report, Carnegie Mellon University, 2013.
http://resources.sei.cmu.edu/asset_files/

Webinar/2013_018_101_69083.pdf.

[12] S. Y. Lee, W. L. Low, and P. Y. Wong. Learning
fingerprints for a database intrusion detection system.

34

In Proceedings of the 7th European Symposium on
Research in Computer Security, ESORICS ’02, pages
264–280, London, UK, UK, 2002. Springer-Verlag.

[13] R. Majumdar and K. Sen. Hybrid concolic testing. In
Proceedings of the 29th International Conference on
Software Engineering, ICSE 2007, pages 416–426, May
2007.

[14] PostgreSQL Global Development Group.
PostgreSQL-9.1.8. http://www.postgresql.org/
docs/9.1/static/release-9-1-8.html.

[15] K. Ramachandra and S. Sudarshan. Holistic
optimization by prefetching query results. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12,
pages 133–144, New York, NY, USA, 2012. ACM.

[16] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. In Proceedings
of the 6th European SOFTWARE ENGINEERING
Conference Held Jointly with the 5th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, ESEC ’97/FSE-5, pages 432–449, New
York, NY, USA, 1997. Springer-Verlag New York, Inc.

[17] A. Sallam and E. Bertino. Poster: Protecting against
data exfiltration insider attacks through application
programs. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, CCS ’14, pages 1493–1495, New York, NY,
USA, 2014. ACM.

[18] K. Sen and G. Agha. Cute and jcute: Concolic unit
testing and explicit path model-checking tools. In
Proceedings of the 18th International Conference on
Computer Aided Verification, CAV’06, pages 419–423,
Berlin, Heidelberg, 2006. Springer-Verlag.

[19] K. Sen, D. Marinov, and G. Agha. Cute: A concolic
unit testing engine for c. In Proceedings of the 10th
European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA,
2005. ACM.

[20] F. Valeur, D. Mutz, and G. Vigna. A learning-based
approach to the detection of sql attacks. In
Proceedings of the Second International Conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA’05, pages 123–140,
Berlin, Heidelberg, 2005. Springer-Verlag.

[21] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode
optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’99, pages 13–. IBM
Press, 1999.

[22] D. Wagner and D. Dean. Intrusion detection via static
analysis. In Proceedings of the IEEE Symposium on
Security and Privacy, S&P 2001, pages 156–168, 2001.

35

