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Abstract—Database Management Systems (DBMSs) provide access control mechanisms that allow database administrators (DBAs)
to grant application programs access privileges to databases. Though such mechanisms are powerful, in practice finer-grained access
control mechanism tailored to the semantics of the data stored in the DMBS is required as a first class defense mechanism against
smart attackers. Hence, custom written applications which access databases implement an additional layer of access control.
Therefore, securing a database alone is not enough for such applications, as attackers aiming at stealing data can take advantage of
vulnerabilities in the privileged applications and make these applications to issue malicious database queries. An access control
mechanism can only prevent application programs from accessing the data to which the programs are not authorized, but it is unable to
prevent misuse of the data to which application programs are authorized for access. Hence, we need a mechanism able to detect
malicious behavior resulting from previously authorized applications. In this paper, we present the architecture of an anomaly detection
mechanism, DetAnom, that aims to solve such problem. Our approach is based the analysis and profiling of the application in order to
create a succinct representation of its interaction with the database. Such a profile keeps a signature for every submitted query and
also the corresponding constraints that the application program must satisfy to submit the query. Later, in the detection phase,
whenever the application issues a query, a module captures the query before it reaches the database and verifies the corresponding
signature and constraints against the current context of the application. If there is a mismatch, the query is marked as anomalous. The
main advantage of our anomaly detection mechanism is that, in order to build the application profiles, we need neither any previous
knowledge of application vulnerabilities nor any example of possible attacks. As a result, our mechanism is able to protect the data from
attacks tailored to database applications such as code modification attacks, SQL injections, and also from other data-centric attacks as
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well. We have implemented our mechanism with a software testing technique called concolic testing and the PostgreSQL DBMS.
Experimental results show that our profiling technique is close to accurate, requires acceptable amount of time, and the detection

mechanism incurs low runtime overhead.

Index Terms—Database, insider attacks, anomaly detection, application profile, SQL injection

1 INTRODUCTION

DATA stored in databases is often critical to the organ-
ization’s operations and also sensitive, for example with
respect to privacy. Therefore, securing data stored in a data-
base is a critical requirement. Data must be protected not
only from external attackers, but also from users within
the organizations [1]. A wide range of institutions from gov-
ernment agencies (e.g., military, judiciary etc.) to commercial
enterprises are witnessing attacks by insiders at an alarming
rate. The most important objective of these insiders is to either
exfiltrate sensitive data (e.g., military plans, trade secrets,
intellectual property, etc.) or maliciously modify the data for
deception purposes or for attack preparation [2], [3], [4].
There are a number of facts that make the prevention of
insider attacks more challenging compared with other con-
ventional (external) attacks [5]. First, insiders are allowed to
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access resources, such as data and computer systems, and
services inside the organization networks as they possess
valid credentials. Second, the actions of insiders originate at a
trusted domain within the network, and thus are not subject
to thorough security checks in the same way as external
actions are. For instance, there is often no internal firewall
within the organization network. Third, insiders are often
highly trained computer experts, who have knowledge about
the internal configuration of the network and the security
and auditing control deployed. Therefore, they may be able
to circumvent conventional security mechanisms.

Protecting data from insider threats requires combining
different techniques. One important such technique is rep-
resented by the access control system that is implemented
as part of the database management system (DBMS) code.
An access control system allows one to specify which
users/applications can access which data for which pur-
pose. In addition to the access control system implemented
as part of the DBMS, applications may also perform their
own “application-level” access control in order to imple-
ment more complex access control policies. In such cases,
accesses by users to the data stored in a database are medi-
ated by the application programs. However, whereas the
use of DBMS-level and application-level access control
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mechanisms provide a first layer of defense against insider
threats, these mechanisms are unable to protect against
malicious insiders that have access to the applications and
can thus modify the code to change the queries issued to the
database and also modify the logics of the application-level
access control. Software-based attestation [6] or simple
integrity measurement by a trusted platform module [7]
could be used for detecting any unauthenticated change to
the application source code by expert insiders. However,
attestation is typically executed during the loading of the
application’s executable and hence it cannot detect changes
of program behaviors at runtime. As a result, during exe-
cution if a program is compromised by an insider using
known attack techniques, e.g., buffer overflow [8] or return-
oriented programming (ROP) [9], attestation mechanisms
cannot detect such malicious changes of behavior in the pro-
gram. Also a malicious insider may be able to modify the
information used for the attestation of the target application
program, thus rendering attestation useless. Apart from
that, using just a simple integrity measurement technique is
not a viable solution because this technique cannot provide
integrity for self modifying code (e.g., JAVA, C#) [10] which
is widely used as front end database applications.

In order to address the above problem, one possible
approach is to analyze the data access patterns of the appli-
cation to create profiles of legitimate activities and then use
at runtime these profiles to detect anomalous database
accesses by application programs.

The design of such an anomaly detection system is challeng-
ing, as the system should fulfill the following requirements:

e It should require minimal modifications to the code

of the application program and the DBMS.

e It should not introduce significant delays that may

negatively impact the performance.

e It should have the least possible number of false pos-

itives and false negatives.

In this paper, we propose DetAnom, an anomaly detection
mechanism able to identify malicious database transactions
that addresses the above requirements. DetAnom consists of
two phases: the profile creation phase and the anomaly detection
phase. In the first phase, we create a profile of the application
program that can succinctly represent the application’s nor-
mal behavior in terms of its interaction (i.e., submission of
SQL queries) with the database. For each query, we create a
signature and also capture the corresponding preconditions
that the application program must satisfy to submit the
query. Note that an application program may execute
different query sequences depending on different values of
the input parameters. Hence, the profile of the application
needs to consider all possible execution paths that lead to
interaction with the database. Each query in the application
belongs to one of these paths and has a set of preconditions
(i.e., constraints) in order to be issued.

A major issue in our approach is that exploring all possi-
ble execution paths of an application program requires
identifying all possible combinations of program inputs,
which is sometimes not feasible. As a result, the unexplored
paths introduce incompleteness in the application profile.
The higher the number of paths explored, the more com-
plete and accurate an application profile is. Hence, to make

our profiling technique close to complete and accurate, we
resort to a software testing methodology, known as concolic
testing [11], [12], that ensures high coverage of the appli-
cation’s code as well as of the created profile. Concolic test-
ing works with a combination of symbolic execution [13]
and concrete execution. Symbolic execution is a classical
software verification and dynamic program analysis tech-
nique where program variables are considered as symbolic
variables and an automated constraint solver based on con-
straint programming logic is used to generate new concrete
inputs (test cases) with the aim of maximizing code cover-
age. Concrete execution is commonly used for testing appli-
cations on a particular set of inputs along an execution path.
As the program may have different behaviors for different
values of input parameters, our approach with concolic test-
ing generates inputs automatically to explore all such pro-
gram behaviors. Note that we do not use our proposed
mechanism in conjunction with concolic testing for finding
bugs or verify the correctness of the program.

Using concolic testing we leverage the advantages of
dynamic program analysis over static analysis which cannot
detect malicious changes of program’s behavior at runtime.
Later in the anomaly detection phase, whenever the applica-
tion issues a query, the corresponding query signature and
constraints are checked against the current context of the
application. If there is a mismatch, the query is considered
as anomalous. The main advantage of our anomaly detection
mechanism is that we do not need any knowledge about
possible attacks to build the application profiles.

Note that we target our approach to securing internal
enterprise software, because this is the most common cate-
gory of applications which directly connect to the database.
But we want to emphasize that our approach can be
extended to protect also multi-tiered applications, by creat-
ing profiles of the application layer which directly commu-
nicates with the database using its API calls as input which
can be generated by the concolic testing engine.

Moreover, we want to highlight that our goal is to protect
the database by monitoring the queries submitted by clients.
Even if our mechanism can identify hosts compromised by
viruses or Trojan horses, this is not our main goal, because
our primary goal is to detect malicious or compromised
host administrators, who are supposed to access the data-
base only through the application but who may explicitly
disable or tamper host based anomaly detection tools.

In this paper, in addition to provide the details of the
approach, we discuss the issues that we encountered in
using the concolic testing technique and in capturing the
application input at runtime to perform the anomaly detec-
tion. We also report experimental data showing the runtime
performance overhead introduced by our anomaly detection
technique. To the best of our knowledge, our approach is the
first using software testing techniques for creating execution
profiles of application programs for the purpose of detecting
execution anomalies at runtime. Such anomalies may be
indicative of application program tampering. Notice that
our approach is complementary to techniques for static anal-
ysis. Such techniques aim at analyzing programs to detect
bugs that can be exploited by attacks at runtime, such as
buffer vulnerabilities. Our approach aims at preventing
malicious changes to programs, after the completion of the
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Fig. 1. System architecture for profile creation.

static analysis, by insiders who have the ability to modify the
application source code or the application binary.

The rest of the paper is organized as follows: Section 2
presents relevant preliminary concepts. Section 3 provides
an overview of our system architecture. Section 4 describes
the adversary model and explains some common attacks
that our system can block. Sections 5 and 6 describe the pro-
file creation phase and the anomaly detection phase, respec-
tively. Section 7 discusses implementation details. Section 8
analyses the security of the proposed approach. Section 9
presents an experimental evaluation of DetAnom. Section 10
surveys related work. Section 11 concludes the paper with a
discussion on future work.

2 PRELIMINARIES

Software Testing is the process of examining the quality of a
software product. It involves monitoring the actual program
execution with the goal of observing unexpected behavior
(e.g., wrong output values, program crashes or early termi-
nation) which implies the existence of bugs. It can also give
a perspective about the security and risks in the product or
service under test. One of the main challenges in software
testing is the capability of testing all possible program
inputs of an application to achieve high code coverage. Con-
colic testing is one of the widely used techniques addressing
this challenge.

Concolic Execution is a program analysis technique [11],
[12], [14] that tries to explore all possible execution paths of
a program by acting according to the following steps. The
program to be tested is first concretely executed with some
initial random inputs. Then the concolic execution engine
examines the branch conditions along the executed path’s
control-flow and uses a decision procedure to find an input
that would reverse the branch conditions from true to false
or vice-versa. This process is repeated to discover more
inputs that trigger new control-flow paths, and thus more
program states are tested. This technique is particularly use-
ful for the automatic generation of high-coverage test inputs
and for software vulnerability discovery.

3 DETANOM ARCHITECTURE

The system architecture consists of several components,
supporting the two phases of DetAnom, that we describe in
what follows.

3.1 Profile Creation Component

Fig. 1 shows the modules supporting the profile creation phase
and their interactions.
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Fig. 2. System architecture for anomaly detection.

This phase starts by providing the application program as
input to the concolic execution module which first instruments
the application. Note that the concolic execution does not
require the application source code. The bytecode is
inspected using reflection to find the branches and track the
input sources to the branch conditions. Then, the application
is started inside an instrumented virtual machine which
links the concolic execution engine to the channels used to
interact with the user. In this way the concolic engine can
generate input to force the execution of different branches.

Therefore, the concolic execution module executes the
instrumented application for a number of times with the
aim of exploring as many execution paths as possible. Since
there is no guarantee that the application terminates on each
input, the concolic execution uses a depth bounded search
to limit the profiling time. The depth of the search is a config-
urable parameter.

Each time the application program issues a query to the
database, the constraint extractor in the profile builder module
extracts the constraints that lead the application program
to follow the current path. These constraints compose a part
of the application profile. In addition, each query submitted
to the database is also forwarded to the profile builder mod-
ule where the signature generator sub-module generates the
signature of that query.

Since the values returned by the database may change the
application control flow, these values are considered as the
database inputs to the application program. Hence, in order
to automatically generate database inputs for concolic exe-
cution, the instrumentation library hacks the standard data-
base connection library and mocks the behavior of the real
database to let the concolic execution generating the values
required to force different execution flows of the application.

Section 5 discusses details about the constraint extractor
and signature generator sub-modules. Finally, the profile
builder module binds the query signature with its corre-
sponding constraints and inserts this record into the applica-
tion profile.

3.2 Anomaly Detection Component
The main modules supporting the anomaly detection phase
are: the anomaly detection engine (ADE), the SQL proxy, the sig-
nature comparator, and the target database as shown in Fig. 2.
The data to protect is stored in the target database. We
assume that the database server is already secured to the
best of current security technology and can be accessed only
through our proxy. The monitored application interacts
with the database through SQL queries which are
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intercepted by the SQL proxy and forwarded to the ADE for
anomaly detection. Moreover, the instrumented environ-
ment collects the application input and adds it as meta-
data to the query. The ADE also includes the signature gener-
ator sub-module that generates the signature of the received
query. Upon receiving the query, the ADE checks whether
the current program inputs satisfy the constraints of some
possible execution paths. If the constraints are satisfied,
the signature comparator compares the signature of the
query associated with the satisfied constraint to that of the
received query. If there is a match, the query is considered
legitimate, otherwise an anomaly is detected. This informa-
tion is then sent back to the proxy, where a custom logic is
used to decide the actions to be executed in order to manage
the anomaly. Examples of such actions include rejecting the
query, sending an alarm to a security administrator, revok-
ing the application program authorizations etc.

4 ADVERSARY MODEL

We assume that at runtime the application program can be
tampered and thus become untrusted. Therefore, we
assume that while the program is executing, the program
may issue a query that:

(@) has never been encountered in the profile creation
phase, i.e., the query does not belong to the applica-
tion at all;

(b)  belongs to the application but is not relevant to the
current execution path;

() isrelevant to the current execution path, but the pro-
gram input variables do not satisfy that query’s cor-
responding constraints.

All of these cases can be easily mapped to well known
security attacks.

In case (a), an attacker may simply use a network sniffer
or perform a man-in-the-middle attack to steal the creden-
tials that the application uses to connect to the database.
Once the credentials are stolen, the attacker may use any
other client to connect to the database, elude all the appli-
cation level security checks, and issue queries that do not
belong to the application.

In case (b), an attacker may obtain the credentials as
described in the previous case and can use a similar technique
to record the queries that the application issues. By repeating
an allowed query the attacker can pass through simpler secu-
rity checks and thus can retrieve sensitive data. Let us assume
that a query retrieves only a row of sensitive data after the
application has performed some sanity checks on the values
used to retrieve the row. An attacker may replay the query
several times, changing only the values used to filter the result
in order to retrieve all the data he/she wants.

In case (c), the attacker compromises the application and
changes its access control policy. For example, most of the
applications add an extra layer of security which requires
the user to provide a pair of username and password. Usu-
ally, such applications retrieve a database table for the pro-
vided credentials to retrieve the set of permissions granted
to the user. Note that this level of security is usually imple-
mented outside of the database. All the instances of the
same application use the same database credentials for the
connection and handle the extra layer of security internally.

If an application is compromised so to return a successful
authentication, on the database side we see only a sequence
of allowed queries for which the constraints may not be sat-
isfied with the program inputs.

We assume that every component involved in the profile
creation phase and anomaly detection phase is trusted. We also
assume that profiles are stored in a secure storage and are
not tampered by an insider or database administrator.

5 PROFILE CREATION PHASE

In the profile creation phase, the application program interacts
with the mock database through SQL queries. We represent
the queries internally in a specific format which we refer
to as signature. Queries’ signatures and corresponding con-
straints are used to build the profile of the application. For
each query, we record its signature and constraints, and
refer to this pair as query record. All query records of the pro-
gram are organized in a hierarchical data structure which
represents the control-flow of the application. We refer to
this data structure as the application profile.

Before explaining the application profiling technique, we
discuss the model that describes the applications” normal
behavior, i.e., the fingerprint with respect to the queries
issued to the database. For our purpose, an application can be
ideally represented using a directed graph where the nodes
represent the application states in which the application
issues queries to the database, and the edges represent the
application inputs required to change the state. We use cycles
in the graph to represent the loops in the application code.

The challenge in creating such profiles is in representing
correctly the dynamic behavior of the application, as
the application may change its own code, or dynamically
download code from internet, or use reflection to dynami-
cally choose which code to invoke. For this reason we use a
dynamic analysis technique to create the profile.

The problem, therefore, is that when we deal with complex
applications it is difficult to map the actual code to the graph
representation we need. A loop in the code may dynamically
create different queries, being mapped as a sequence in the
graph; while a sequence of different functions may issue the
same query, being better represented using a cycle in the
graph. When we create the profiles using the concolic execu-
tion, what we do is to unroll the abstract graph recording an
execution tree. This is the reason why we need a bounded
search and why our profiles may be incomplete.

Following in this section, we discuss the format of the
query signatures and constraints, and the detailed proce-
dure for building the application profile.

5.1 Query Signature Representation

In our system, we consider a subset of the SQL Data Manip-
ulation commands. Specifically, we focus on the SELECT,
INSERT, UPDATE, and DELETE commands.

SQL syntax is usually represented using Backus Normal
Form [15] and allow one to specify very complex queries,
typically nesting them at different levels. In order to describe
our query representation techniques, we organize the pre-
sentation in two parts. In the first part we describe how we
create the signature of simple queries; in the second we focus
on how we deal with advanced queries which contain nested
sub-queries, arithmetic operators and function calls.
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TABLE 1
Relation Schema

Table Table Attribute Attribute
D name ID name
100 PersonalInfo 101 employee_id

102 employee_name
200 WorkInfo 201 employee_id

202 work_experience

203 salary

204 performance
300 JobInfo 301 base_salary

302 min_work_experience

303 max_work_experience
5.1.1  Simple Queries

Consider as example the format of a simple SELECT com-

mand:
SELECT [DISTINCT] {TARGET-LIST}
FROM {RELATION-LIST}
WHERE {QUALIFICATION}

Our system internally represents an SQL query as a
signature of the form (c,t,7,¢,n). Here, ¢ represents the
type of the SQL command which takes one of the values:
‘S’”, ‘T, ‘U, and ‘D’ in case of SELECT, INSERT,
UPDATE, and DELETE commands, respectively. The sec-
ond field, ¢, is a list that contains the identifiers (IDs) of
the attributes projected in the query, i.e., the attributes
that appear in the query result or are modified by the
query; this information is extracted from the TARGET-
LIST of the query. Attributes have a unique ID among all
the tables. The third field, r, is a list that contains the IDs
of the tables being accessed in the query, i.e., the tables
that appear in the RELATION-LIST. The next field, ¢, is a
list of IDs of attributes referenced in the QUALIFICATION
in the WHERE clause of the query. The last field, n, in the
signature denotes the number of predicates in the WHERE
clause.

As an example, consider the relation schema in Table 1.
ID’s of tables and attributes are as shown in the table. Now,
consider the query:

SELECT employee_id,
FROM WorkInfo
WHERE work_experience > 10;

work_experience

The signature of the above query is

(S, {201,202}, {200}, {202}, 1).

We explain this signature construction in order from left
to right. The leftmost S represents the SELECT command.
201, and 202 represent the IDs of attributes employee_id
and work_experience, respectively. 200 represents the
ID of the table WorkInfo. 202 represents the attribute used
in the WHERE clause, i.e, work_experience. The rightmost
one corresponds to the number of predicates in the WHERE
clause.

For completeness, we briefly describe the other com-
mands as well and we show how they differ from the main
example.

The insert statement has the form:

INSERT INTO {RELATION}
SET {TARGET-LIST}

An INSERT command can specify only one relation, that
is, the table where the new values are going to be added.
The target list is a list of the form target = value where
target is a column name and value is an expression that
can be evaluated to the value to be added. A query signa-
ture of an insert statement has thus the form

(I, {TARGET-COLUMNS}, {RELATION?}, 0), 0).

The update statement has the form:

UPDATE {RELATION}
SET {TARGET-LIST}
WHERE {QUALIFICATION}

An UPDATE statement can specify only one relation, that
is, the table to be updated; the target list similar to the one
of the INSERT case, with the newer values; and a qualifica-
tion clause, similar to the SELECT case, which specifies the
rows to be updated. A query signature of an update state-
ment is like the one for the SELECT but specifies U in the
first position and has exactly one table in the relation list. As
an example

(U, {TARGET-COLUMNS}, {RELATION},
{QUALIFICATION}, {# predicates}).

The delete statement has the form:

DELETE {RELATION}
WHERE {QUALIFICATION}

A DELETE statement specifies only one relation, that is,
the table whose rows must be deleted and a qualification
list specifying the rows to delete. A query signature of a
DELETE statement is like the signature of a SELECT state-
ment but specifies D in the first position, has exactly one
table in the relation list and has an empty target list

(D, 0, {RELATION}, {QUALIFICATION?}, {# predicates}).

5.1.2 Complex Queries

We focus on two different aspects: complex predicates in
the WHERE clause and nested queries. Note that these two
aspects are not strictly disjoint, because a sub-query can be
nested also inside the WHERE clause.

Sub-queries can appear almost everywhere a value can
appear. For example, the following query returns a list of
employees with their working experience and the overall
company maximum salary. This query includes a sub-query
as part of the projection clause, that is, the list of data to be
returned by the query.

SELECT employee_id, work_experience, (
SELECT max (salary) FROM WorkInfo

) as maxSalary

FROM WorkInfo

Sub-queries can also appear in the WHERE clause. For
example, the following query uses a nested query to retrieve
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the highest salary and uses this value to select the set of
employees who earn it.

SELECT employee_id
FROM WorkInfo
WHERE salary = (

SELECT max (salary)
)

FROM WorkInfo

Sub-queries can appear also in the FROM clause. In this
example, a virtual table is materialized that contains the
total salary paid for every performance level, and such table
is used to check the quota that every employee earns com-
pared to his/her performance level.

SELECT employee_id, performance,
salary/total
FROM WorkInfo, (
SELECT sum(salary) as total,
performance as per_group
FROM WorkInfo
GROUP BY performance
) as SalaryInfo

WHERE performance = per_group

Eventually, sub-queries may use tables and columns
used in the outer queries and mix query types. In the follow-
ing example, the base salary is updated according to the
average salary of the employees.

UPDATE JobInfo SET base_salary = (
SELECT avg(salary)
FROM WorkInfo
WHERE min_work_experience <
work_experience AND
work_experience <=
max_work_experience

)

Note that the inner query accesses two columns, min_
work_experience and max_work_experience, of the
table JobInfo which is not declared in its FROM clause, but
in the parent’s one. Thus, the inner query signature contains
such columns ID but not their table ID, as shown by the
following signature

(S, {203}, {200}, {302,202, 303}, 2).

To create the global query signature we nest signatures
as they appear in the query. Thus, the complete signature of
the query in the last example is

(U, {301, (S, {203}, {200}, {302, 202, 303}, 2)}, 300, 0, 0).

Another way to create complex queries is to use func-
tions or operators to manipulate data, as we can see in the
following example.

SELECT =

FROM WorkInfo

WHERE filter (performance,
work_experience / salary)

The WHERE clause of this query contains a custom func-
tion which returns a Boolean value starting from the perfor-
mance and the work experience over salary ratio, which is
obtained by using the division operator over two different
columns. In this example we can see clearly why the profile

contains both the columns used in the WHERE clause and
the number of predicates. Even if such values are strictly
correlated in trivial cases, it is important to know both in
order to identify more complex queries. The signature of
the query in the last example is:

(S,{201, 202,203,204}, {200}, {204, 202, 203}, 1).

5.2 Concolic Execution
This section describes the basics of concolic execution used
during the profile creation phase to explore the possible execu-
tion flows of the application.

The concolic execution takes the application as input and
instruments it to log each operation that may affect a sym-
bolic variable value or a path condition. This module then
executes the program concretely with some initial default
input. In order to explore other paths, it examines the
branch conditions (i.e., constraints) along the executed path,
and uses a constraint solver to find inputs that would
reverse the branch conditions. The execution is repeated for
a number of times until all the execution paths are explored
or the depth search limit is reached in all the explored ones.

Considering that the goal of our system is to protect a
database, we expect that the instrumented application issues
queries along some of these execution paths. The issued
queries are forwarded to both the profile builder and the
mocked database. Upon receiving a query, the constraint extrac-
tor sub-module in the profile builder extracts the constraints
that are prerequisite to execute that query. The mocked data-
base uses the concolic engine to generate the query results
that are required to explore newer execution paths.

We want to highlight that the queries are captured at the
time when they are sent to the database; therefore we can cre-
ate correct profiles even when queries are built by concate-
nating strings. For example, consider the following code:

1 String query = "SELECT ";

switch (what) {
3 case 1l: query += "name, surname ";
4 break;

case 2: query += "address ";

6 break;
7 default: query += "% ";
s}
9 query += " WHERE ssn="" + ssn + "’";
0 s.executeQuery (query) ;

Depending on the value of the variable what, three dif-
ferent queries can be executed. During the profile creation,
the constraint extractor collects the constraints until the
executeQuery is executed and the signature generator
gets actual string values as passed to the same function.
Therefore, in this example, three nodes will be added to the
profile, one for every concrete query that can be issued.

Before explaining in detail how the profiles are created, it
is important to discuss about how the query signatures are
extracted. The problem is that in order to create meaningful
signatures it is necessary to know the database schema.
Consider the following query:

SELECT a, b
FROM t1l join t2
WHERE tl.c = t2.c
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1 public static void salaryAdjustment (int
profit, int investment) {
2 Statement s;

4 int employee_count = 0;
if (profit >= 0.5 x investment) {

6 String queryl = "SELECT employee_id,
work_experience FROM WorkInfo
WHERE work_experience > 10";

7 resultSetl = s.executeQuery (queryl);

3 resultSetl.last ();

9 if (resultSetl.getRow () > 100) {

10 String query3 = "SELECT employee_id

FROM WorkInfo WHERE

work_experience > 10 AND

performance = "good’";
1 resultSet3 = s.executeQuery (query3);
12 ... // do other operations
13 } else{
14 String query2 = "UPDATE WorkInfo

SET salary = salary = 1.2";

15 s.executeUpdate (query2) ;

16 lelse(

17 String query4 = "SELECT
p.employee_name FROM
PersonalInfo p, WorkInfo w WHERE
performance = 'poor’ AND
p.employee_id = w.employee_id";

18 resultSet2 = s.executeQuery (quervyi4);

19 ... // do other operations

2
o1}

Fig. 3. An example of database application.

Without knowing the schema it is impossible to map the
columns a and b to their respective tables.

Therefore the signature generator module requires a setup
which specifies the tables used by the application. For every
issued query, this module parses the query to identify
the composing tokens and resolves the columns name to
match them to their tables. Once all the columns are cor-
rectly resolved, the query signature can be created accord-
ing to the approach introduced in Section 5.1.

5.3 Profile Creation

In this section, we describe in details, with a running exam-
ple, the profile creation phase: how the concolic engine exe-
cutes the application; how the user input and the mocked
database are used to explore newer paths; how the profile
builder creates the query records and composes them to cre-
ate the profile.

The definition of application profile is as follows:

Application Profile. The profile of an application program
P is a directed tree T'(Vp, Ep). Each node v; € Vp is a query
record of query g; represented as (sig(g;), ¢;), where sig(g;) is
the signature of ¢;, and ¢; is the set of constraints to execute
¢;- An edge ¢;; € Ep denotes that query g; is executed after
query ¢; and hence, node v; is a child of node v;.

To illustrate the profile creation procedure, we continue
with the examples given in Sections 5.1 and 5.2, following
the code shown in Fig. 3.

The concolic execution takes the java bytecode, instru-
ments it to find the branch conditions, and executes it inside
the instrumented environment. Consider the program
in Fig. 3 that asks the user to input the values profit and

TABLE 2
Constraints for Queries
cy arithmetic:1.0xy —0.529 >=0.0
&) database: 23 <100.0
c3 database: z3 > 100.0
cy arithmetic: 1.0x; —0.529 <=-1.0

investment and passes them to the function salaryAd-
justment. The concolic execution uses the environment
instrumentation of such program to block the interactive
requests by passing to the program automatically generated
values.

The first time a numeric variable is encountered, the
value returned is 0. Therefore, during the first execution,
the function is called with both parameters set to 0. Follow-
ing the code, at line 5, the condition will be evaluated true
and the constraint extractor will compute the constraint ¢; as
shown in Table 2. Once queryl is submitted, the profile
graph node QR; = (sig(query),c¢1) is created and added as
the first child of the root of the application profile as shown
in Fig. 4a.

In this phase, the queries do not reach the real database,
but they are blocked by the environment instrumentation
which uses the concolic engine to generate the returned val-
ues. In the first execution, the instrumentation will return 0
rows; therefore the condition at line 9 will be evaluated to
false, generating the constraint c,, issuing the query query?2
and creating a new node in the profile as shown in Fig. 4b.

At this point nothing is left to do in the function. Assum-
ing that the application ends too, the concolic execution
backtracks the execution to the last jump encountered with
an unexplored branch. In this case it is the if statement at
line 9. Therefore a new value for the variable is generated in
order to negate the previous result and explore the new
branch. In this case it means that the concolic engine must
return 101 rows as result of the query1. Therefore query3
is executed and its features together with the constraint c;
are added into the profile as shown in Fig. 4c.

Finally, the concolic execution has left unexplored only
the else branch of the if at line 5. Therefore it uses a con-
straint solver to find values of profit and investment
which negate the conditions. Assume that it sets profit and
investment variables to 49,999 and 100,000 respectively;
the constraint ¢4, as shown in Table 2, is then generated;
query4 is executed and node QR, = (sig(querys),cs) is
added into the profile as child of the root as shown in Fig. 4d.

Note that the environment instrumentation blocks the
execution of this query too and lets the concolic engine to
generate the returned data. The concolic execution will try
to explore all the possible paths starting from the unwritten

(€Y

Fig. 4. Steps of profile graph construction.
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TABLE 3
Query Signatures
Query Signature
query; {S, {201, 202}, {200}, {202}, 1}
querys {U, {203}, {200}, 0, 0}
querys {S, {201}, {200}, {202, 204}, 2}
query, {S, {102}, {100, 200}, {204, 101, 201}, 2}

code at line 19, but since none of these will issue any new
query nothing is recorded inside the application profile.
At this point, if the concolic execution has to stop because
the maximum search depth has been reached, the node QR3
will be marked as incomplete, otherwise it will be marked as
complete.

At this point, since the concolic execution module has com-
pleted exploring the execution paths, the profile creation
phase ends.

Tables 3 and 4 show respectively the query signatures
and the query records generated to represent the example
application. Table 2 shows all the constraints generated pro-
filing the application shown in Fig. 3. Note that the con-
straints do not contain meaningful names for the variables.
This happens because the concolic execution works using
the compiled application and the variable names are not
stored inside the bytecode. Therefore the concolic execution
identifies variables just by their order of appearance.

Note that the concolic execution uses a bounded depth-
first search strategy to explore the execution paths. How-
ever, due to possible failures in solving complex constraints,
the concolic execution may not be able to actually explore
all execution paths of a large and complex application, thus
leaving the profile incomplete. We handle this situation as
follows.

During the concolic execution, we stop exploring a path
when we reach either the maximum depth search limit or
the end of a path whose depth is smaller than the maximum
limit. If we reach the maximum limit and stop exploring that
path, we mark the last state as incomplete. Note that a node
can be incomplete without any regard of its number of chil-
dren or distance from the root, because the depth used by
the concolic execution counts the number of branches, while
the depth of the profile tree counts the number of queries.

Knowledge about which nodes are incomplete is neces-
sary for the detection phase. Unfortunately, we cannot infer
the minimum depth to use to completely profile an applica-
tion because this can be reduced to the halting problem.
Therefore, we deal with the problem of incomplete profiles
as follow. If a profile contains too many incomplete nodes,
the administrator may decide to create the profile again by
increasing the limit of the search, or to manually compute it
using the logs obtained after the program execution.

TABLE 4
Query Records
Query record Contents
QR (sig(queryy), c1)
QR; (sig(querys), c2)
QR3 (sig(querys), c3)
QR (sig(querys), ca)

6 ANOMALY DETECTION PHASE

We now describe how application program profiles are
used to distinguish between legitimate and anomalous
database queries. The steps of the anomaly detection proce-
dure are presented in Algorithm 1.

Algorithm 1. Anomaly Detection

1: Input: Application Profile (AP)
2: v, =root of AP
3: while the program is executing do

4: g =issued query
5:  ¢; = input constraints
6:  signature generator generates sig(q)
7:  found = false
8:  for each child v; of v, do
9: if ¢; is satisfied then
10: signature comparator compares sig(q) to sig(query;)
11: if signatures match then
12: response: NOT-ANOMALOUS
13: vy = v
14: else
15: response: ANOMALOUS
16: end if
17: found = true
18: break
19: end if
20:  end for
21:  if found == false and v, is an incomplete node then
22: response: WARNING
23:  endif

24: end while

6.1 Detection of Anomalous Queries

In the anomaly detection phase, whenever the application pro-
gram issues a query, the proxy module intercepts and for-
wards it to the ADE module.

When an application program starts executing in the
anomalydetection phase, the ADE module sets the root node
of the application profile as the current parent node (v,).
Upon receiving the first query along an execution path of
the program, the ADE considers all the children of v, as can-
didate nodes. The ADE then takes the inputs from the execut-
ing application and for each candidate node it verifies
whether the inputs satisfy the constraint in the query record.
If the inputs satisfy constraint ¢;, the program is expected to
execute the query which is associated with the query record
QR; containing the satisfied ¢;. As next step, the signature
generator sub-module generates the signature of the received
query and the signature comparator sub-module compares it
with the signature stored in QR;, i.e., sig(query;). For a legit-
imate query, the signatures match. The verification outcome
is then passed to the proxy module which then sends the
legitimate query to the farget database for execution.

For subsequent queries issued by the program, the ADE
module considers the query record of the most recently exe-
cuted query as the current parent node, and verifies the sig-
nature and corresponding constraints in a similar way as
described above.

As we already discussed, during the profile creation phase
we use a depth bounded search to explore the execution



BOSSI ET AL.: ASYSTEM FOR PROFILING AND MONITORING DATABASE ACCESS PATTERNS BY APPLICATION PROGRAMS FOR... 423

paths. So it is possible to have incomplete profiles. This is the
reason the ADE module can return three different results:
NOT-ANOMALOUS, ANOMALOUS and WARNING

During the profile creation, we know when we do not
enable the backtrack because we reached the maximum
search limit. Therefore we mark the last node as incomplete.
When we receive a new query to analyze, if we cannot find
any matching result we check if the last status was an
incomplete node. If this is true, it means we are entering in
an unseen state that may receive unexpected queries. In this
case we return a warning, because our system is unable to
decide if the query is anomalous or not. It is the duty of the
SQL proxy to decide how to handle this case.

Ideally, whenever a program creates too many warnings
in our system, an administrator should verify and edit the
profile to fix the problem, or create a new profile using a
deeper search.

6.2 Case Studies

In this section we present some case studies to illustrate
how the ADE module works in the anomaly detection phase.
We assume that the values of profit and investment vari-
ables are set to 60,000 and 100,000, respectively. We consider
the following cases.

6.2.1 Execution of query, and querys

According to the values of input variables, the application
program is eligible to issue query;. So in the anomaly detec-
tion phase, upon receiving the issued query;, the ADE mod-
ule takes the program inputs to check whether they satisfy
the constraints of either QR; or QRy. As ¢ is satisfied, the
signature generator sub-module generates the signature of
the input query and the signature comparator sub-module
compares it with the signature part of QR;. The match is
positive and hence query; is assessed as non-anomalous.
Now assume that the number of records returned by query;
is less than 100. In this case, the constraint ¢, is satisfied and
the attempt to execute querys is considered non-anomalous
because the signature of query, matches to that of the QRx.

6.2.2 Execution of query, and querys

In this case, query; is executed legitimately as described in
the previous case. Afterwards, when the program issues
querys, the signature comparator sub-module finds that the
signatures of querys and that of the expected query do not
match. As a result, the ADE module raises an alert indicat-
ing querys as anomalous.

6.2.3 Execution of a Query That Does Not Belong
to the Program

If a query is issued in the anomaly detection phase that has
been never encountered in the profile creation phase, the
signature of this query does not match with any of the query
records. In this case, if the query is issued in a state that is
profiled completely, the ADE module raises an anomaly.
However, if the program execution reaches a state where
the profile is incomplete (because the maximum depth
search was reached during the testing), the ADE module
raises a warning.

6.2.4 SQL Injection Attacks

Halfond et al. [16] classified different types of SQL injection
attacks. The tautology attacks are the easiest to detect,
because they introduce tautologies in the WHERE clause that
can be easily detected by a simple SQL parser. Some attacks
consist of sending illegal queries, because by analyzing the
resulting error messages it is possible to infer meaningful
information about the schema and the type of database.
Such attacks can be identified by analyzing the error logs.
The remaining attacks use special encoding or unescaped
parameters to alter the executed query.

It is important to note that, as these attacks typically
modify the queries by adding new predicates, they can be
easily detected by our anomaly detection mechanism
because the query signature contains both the columns used
and the number of predicates in the WHERE clause.

We illustrate the detection of SQL injections with a sample
application program. Such program has the function of
displaying the medical records of an authenticated signed
user. The user is authenticated by entering his username and
password. The legitimate query execution would look like:

1 username = readInputUser();
password = readInputPassword();
query = "SELECT x FROM MedicalRecords
WHERE uname = ’'" + username + "’/ AND
password = " + password + "'";

If the username is John and the password is Smith, then
the query would be:

SELECT =
FROM MedicalRecords

WHERE uname = ’John’ AND password = ’Smith’;

However, such query is vulnerable to SQL injection
attacks by which the attacker can display the medical
records of other users. This can be achieved if the attacker
enters in the password input field the string password =
’OR uname = ‘Carl’. If so, the following query would be
issued which would display the medical records of the user-
name Carl to the attacker.

SELECT =
FROM MedicalRecords
WHERE uname = ’“John’
uname = ’'Carl’;

AND password = " 7 OR

Such a vulnerability exists in any application that allows
the user input to change the structure of an SQL query.
Since SQL injection attacks are based on re-structuring the
SQL query, our mechanism by comparing the query struc-
ture to the query signatures saved in application profile is
able to detect changes in the query. More specifically, as we
count the number of predicates of the WHERE clause as
part of the query signature, we are able to detect any addi-
tional predicates introduced by SQL injection. In the exam-
ple above, the number of predicates is 2 before the injection,
and it becomes 3 after the injection.

6.2.5 Two-Step SQL Injection Attacks

These attacks are also referred to as second-order injection
attacks and represent a complex form of data-centric
attacks. The purpose of these attacks is to create an SQL
injection attack that can be processed at a later time. This is
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achieved by injecting malicious input into the database that
is legitimately saved into the database, but will result in an
SQL injection attack at a later time when other types of
queries perform actions on the maliciously inserted data. To
clarify, consider an example of a web application that regis-
ters its users upon using its services. If a malicious user
chooses (‘OR ‘1’ = ’1’) as his username, then adding
this user to the database will result in the execution of the
following SQL query:

INSERT INTO users VALUES ("’ OR "1’ = 7’"1"");

This is a legitimate query and will not result in an SQL
injection attack, and thus the username "OR ‘1’ = ‘1’ will
be successfully created. However, if at a later time the mali-
cious user or even the web administrator decides to delete
this account, the executed SQL query is:

DELETE FROM users

WHERE uname=’ ' OR "1’ = ’"1’;

This is when the attack is effective as the query will result
in deleting all the users in the database.

Our AD mechanism will be able to detect this type of
attacks when the SQL injection is about to perform the
intended attack action on the database. Consider the exam-
ple above. Our AD mechanism will find a mismatch with
the DELETE SQL query signature because of the change in
the number of predicates in the WHERE clause. As a result,
the ADE will assess the execution of such query as anoma-
lous. Like the case of SQL injection attacks, additional predi-
cates will result in a mismatch of the SQL injected queries
when compared to the existing query signatures and there-
fore will result in the query being identified as anomalous.

6.3 Simple Detection

Instrumenting all the instances of the application to be
secured is not always possible. Possible reasons may be
related, but not limited, to:

e time constraints as the application may be already
deployed on a large number of machines and update
all of them may not be easy;

e technical reasons as the environment used may not
expose any API for the instrumentation (i.e., JVMs
for mobile devices);

e performance reasons as in applications with high
numbers of user interactions, the overhead intro-
duced by sending the user input may introduce sig-
nificant delays.

Therefore we have also developed a simple version of
our anomaly detection approach which does not require the
instrumentation for the anomaly detection phase. We refer
to this approach as simple detection, whereas we refer to the
previous approach as complete detection.

Since the profile creation phase does not change, the
same profile can be used for both the simple and complete
detection phases. The main difference is that, without
receiving the application input during the anomaly detec-
tion, we can verify only that an allowed sequence of queries
is issued but without checking the constraints.

Hence, the simple approach can still verify that only
allowed queries are submitted in the right order, but cannot

enforce any longer that the sequence of queries is consistent
with the input received by the application. Therefore, for
example, a control flow attack that modifies the code from

1 if ( userInput() == "y’ ) {
2 // delete a record
3 }
to
1 1f ( true ) |
2 // delete a record
5}

cannot be detected any longer.

7 IMPLEMENTATION

In this section, we discuss the implementation details of the
proposed system. In our implementation, we consider
applications in the form of Java bytecode, which is mostly
produced by compiling Java source code, but can also be
generated starting from other languages, most notably
Scala. However, our proposed anomaly detection mechanism
can be used for other kinds of application programs.

7.1 Constraint Extractor

Our implementation of the constraint extractor is built on top
of the JCute concolic testing framework [17]. This frame-
work uses Soot [18] for instrumenting Java class files and
Ipsolve for solving linear programs.

In the profile creation phase the concolic execution
engine takes the application and the depth search limit as
inputs and instruments the application using Soot for
branch analysis and backtracking. We instrument the run-
time environment to generate user input and database con-
tent that direct the concolic execution to visit different
branches of the application. Once all the branches have
been explored, or the concolic execution has reached the
maximum depth search limit, the concolic execution and
the profile creation phase ends.

Our custom instrumentation allows one to capture all the
queries issued to the target database. Every time a new
query is issued, the constraint extractor first captures the con-
straints of the current path from the root to the intercepted
query. Since the constraint extractor knows the constraints of
the most recently executed query along this path, it extracts
only the constraints that are extension of those of the most
recent query and stores them into the application profile along
with the signature of the intercepted query.

7.2 Signature Generator
We use PostgreSQL-9.1.8 [19] to implement the signature
generator module. PostgreSQL delivers all issued queries to
the parser to generate a query parse tree using the method
exec_simple_query (). In this method, our customized
function for signature generator imports necessary query
information (command, target list, relation list, and quali-
fiers) from the parse tree and creates the query signature.
Application Profile. The profile builder module creates query
records by combining the query signatures generated from
signature generator and the constraints extracted by constraint
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Fig. 5. Profile graph.

extractor. These records are organized according to a hierar-
chical data structure (see Fig. 5) and stored in PostgreSQL.

7.3 SQL Proxy

The SQL Proxy module is in the charge of intercepting the
queries before they reach the database, forwarding them to
the ADE and handling the query responses.

The proxy is written so to offer an interface that is binary
compatible to the target DBMS. Therefore a plugin must be
implemented for every supported DBMS.

Since not all the database protocols support sending cus-
tom meta-data along with the query, our SQL proxy takes
care of discarding the custom meta-data and the user input
before forwarding the query to the target database.

It is important to note that the proxy can filter the connec-
tion in both the directions; therefore it is also possible to
alter the returned data in case an anomaly is found.

The proxy is also in charge of taking actions in response
to an anomalous query. As the most suitable response to
anomalous query depends on many application related fac-
tors, the proxy provides a policy language by which the sys-
tem administrator can define customized actions. Since not
all the anomalous queries are attempts to steal sensitive
data, in order to select a response the administrator may
need to consider other factors, e.g., whether the query is gen-
erated during working hours, or from a trusted computer,
whether the query retrieves some low relevance data, or
whether the query is issued during the weekend, or from an
intranet, or whether query is trying to retrieve sensitive
data. Based on these factors, the application may be required
to disconnect immediately before the data is returned.

Since the proxy filters the data in both directions, one can
decide for performance reasons to let the query reach the
target database as soon as it is recorded by the proxy and
block the result returned by the query in case of an anomaly
is detected. Obviously this can be safely and easily done
only for queries that do not update the database.

Our current implementation consists of a Java program
that supports the last version of Oracle. Whenever an anom-
aly is found, the query is put in hold and a message is
prompted to an administrator asking the action to perform.
The valid actions that can be chosen are: 1) log the query, 2)
drop the query, 3) close the connection, and 4) redirect the
program to an honeypot.

7.4 Architectural Techniques for Capturing

Program Input
The system relies on the ability to instrument applications in
order to inject custom code to generate—during the profile
creation phase—or capture—during the anomaly detection
phase—the user input.

Though our implementation focuses on Java, the same
technique can also be applied to other application platforms
and environments.

There are two well known approaches to instrument an
application program: change the application itself or change
its working environment. In our scenario we consider that
we do not have the source code of the application; therefore,
changing the application itself means having to change the
compiled code (i.e., the binary of the application) or using
some decompiling mechanism. Even if this is technically
possible, it raises the following issues. The application
binary may be obfuscated [20]; therefore, analyzing the con-
trol-flow to find the places where the application input is
collected is not a trivial task which may even introduce
bugs in the software. Another issue is that, especially in
high security environments, the applications may require to
be digitally signed. Since such kind of instrumentation
breaks the application signature, a security check may block
its execution. Taking into account of all these issues, we
decided to adopt the second approach: instrumenting the
environment.

The Java working environment can be easily instru-
mented by changing the Java Virtual Machine that is in
charge of interpreting and translating the bytecode into the
machine language. This can be easily done, in most of the
virtual machine implementations, using the non-standard
option -Xbootclasspath/a:path which let the user to
override the standard classes with a custom provided jar
file. The main advantages of this approach is that we do not
change the application itself; therefore we do not break any
signature based security check. Moreover, since OpenJDK is
the reference implementation for Java SE, it is very easy
to find the source code of the classes that we need to ins-
trument and change them without the help of any decom-
piler. Last but not the least, by instrumenting the whole
environment we can rewrite the database connection library
to mock the behavior of a database. Implementing a fake
database in software allows us to create the profiles of
the application program faster and also to change the data-
base content easily to explore new execution paths by the
concolic execution module during the profile creation phase.
We have thus created a new JDBC library which mocks
the database by returning data generated by the concolic
engine and using the instrumentation to replace, during the
profile creation phase, the selected database connection
library with our custom code. During the execution of
the complete detection, we use the instrumentation to
wrap the used JDBC library with a custom code which adds
the user input as meta-data every time a query is sent to the
database.

This approach is not free of drawbacks. The biggest chal-
lenge we had to solve is that, by instrumenting the whole
environment, we do not change just the application behav-
ior but also the behavior of all the libraries that it uses. Most
of the time this is the desired behavior, but there are few
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TABLE 5
Test Application Details

Test Profile Code Profile size  Number Number Number of Number of Lines of
application time coverage (nodes) of “if” of “for”  nested blocks  unique queries code

#1 40 seconds 100% 103 7 0 3 14 235

#2 5 minutes 70% 351 15 0 4 30 283

#3 4 days 20% 319 37 32 8 106 543

exceptions. The problem is that Java input classes read from
streams without knowing the real source of the data. When
we instrument a class—i.e., Buf feredReader—we do not
know if the actual instance is reading from the console,
from a file, from a network stream or if it is used as a wrap-
per for another already instrumented class. In order to filter
out the input that we do not need, an inspection of the stack
is required with a good heuristic that should be tuned
according to the tested application.

Note that a complete instrumentation library must con-
sider all the classes and functions that can be used to collect
user input. As it is easy to guess, this is a very large set
because it includes most of the GUI components; all the
methods to read from network, files and console; uncom-
mon input sources, like accelerometers, joy pads or any
other set of sensors and so on. Even if providing a rea-
sonable complete implementation of the instrumentation
library is possible, it is outside the scope of our work. For
this reason we limited our implementation to the input
sources necessary for our tests only.

Concluding, we would like to mention again that our
approach was tested on Java, but it can also be easily imple-
mented in other languages. For example, the LD_LIBRARY_
PATH can be used to instrument native Unix applications,
forcing them to use custom libraries instead of the default
ones.

8 SECURITY ANALYSIS

In what follows we analyze the security of our proposed
system.

The Attacker Cannot Execute Queries that Do Not Belong to
the Application. DetAnom enforces a policy that any query
outside of the application is considered as ANOMALOUS or
WARNING. Our approach checks the signature of the issued
query against the signature stored in the profile. If the signa-
tures do not match, the issued query is considered as ANOM-
ALOUS. If the program reaches the maximum depth search
limit and issues a query, the ADE generates an WARNING
message and holds that query until the security administra-
tor resolves the issue.

The Attacker Cannot Execute a Query that is Irrelevant to the
Current Execution Path. If an attacker has knowledge about
an allowed query, he/she may repeat that query a number
of times to retrieve all the sensitive data. DetAnom detects
such attempt by following the profile graph which main-
tains the order or the sequence of the queries. If the issued
query is out of the order with respect to the current execu-
tion context, DetAnom flags the query as ANOMALOUS.

The Attacker Cannot Execute a Query that is Relevant to the
Current Execution Path, But for Which the Program Inputs Do
Not Satisfy the Comstraints. An attacker can exploit any

vulnerabilities of the application and change the application
level access control policy. In this case, the attacker may exe-
cute a query that is relevant to the current execution context
but the input values do not satisfy the constraints. There-
fore, whenever a query is issued, DetAnom checks whether
the constraints associated with the candidate nodes (i.e,
nodes which are reachable from the current state) are satis-
fied by the program inputs. If constraints are not satisfied
the query is flagged as ANOMALOUS.

The Attacker Cannot Tamper/Change the Profile. Our pro-
posed approach stores the profile in the ADE which is outside
the scope of the attackers. Only the security administrator
can access the profile. Also, we enforce a separation-of-duty
policy to prevent any malicious security administrator from
tampering the profile.

9 EXPERIMENTAL EVALUATION

We have evaluated the performance of our proposed Det-
Anom mechanism. Our experiments have been performed
on a virtual machine running Ubuntu-14 as operating sys-
tem, with 10 GB of RAM memory and four processors.

Considering the deterministic behavior of our approach,
and considering that in case of a control-flow attack we
expect to find all the queries after the attack to be flagged as
anomalous, we focused the evaluation on the performance
and the overhead required to send the user input and verify
the constraints.

Since to the best of our knowledge there is no public
available dataset suitable for our needs, we generated some
test applications. The goal was to test DetAnom using
applications with different size, in order to check the behav-
ior in case of partial profiles. The details of such applications
are listed in Table 5, ordered by increasing complexity; the
first two use only binary branches, while the third contains
also for loops. As we can see in the second column, the
profile creation time increases very fast. The reason is that
in the worst case this time is exponential in the number of
branches. A limitation of the concolic testing tool we use is
that the backtrack support is not implemented. Therefore
every time a new branch has to be explored, a new execu-
tion of the application is required. Considering that we
generated the test applications nesting binary branches
evenly, profiling an application with an extra “if-else”
requires twice the time. Adding loops slows down even
more the profile creation because, as explained in Section 5,
jCute actually unroll loops that can be seen as a series of
nested “if”s where every “if”, but the last one, contains the
loop body and the next if.

To test the applications, a pseudo random input genera-
tor has been used to simulate the user input. Initializing the
generator with the same seed makes it possible to test the
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Fig. 6. Execution time overhead.

same execution flow. We analyzed 100 different execution
flows for each application. For each execution flow we
recorded the execution time and the network usage of the
application in both a normal execution and an execution
protected by DetAnom.

Fig. 6 shows the average execution time of the applica-
tions compared to their average execution time with our
anomaly detection system enabled. As we can see the run-
time overhead is small and around 20 percent. We can also
notice that the average execution time of the longer applica-
tion is just few milliseconds higher than the execution time
of the smaller one. The reason is that the time required to
start the JVM is considerably higher than the time required
to send a query.

Fig. 7 shows the network overhead introduced in order
to send the application input to the anomaly detection
engine in order to check the path constraints. We can see
that in the first two applications the overhead is between
30 and 40 percent whereas in the third it reaches 60 percent.
Such results match our expectation that larger size pro-
grams have more complicated control flows and therefore
require more data to be transferred to check the constraints.
Even if these percentages may appear very high, we should
consider that the absolute values are small. In the last test
the average overhead was only of 5.6 kilobytes. Whereas in
the first two is respectively 1.1 and 1.2 kilobytes. Moreover,
it is important to point out that the network overhead is
not related to the amount of data transferred between the
database and the application, but only to data required to
transfer the application input to DetAnom. In our tests we
used a very small database. We expect, however, that in
real applications the actual data retrieved by the database
is higher than the few rows retrieved by our tests. There-
fore the overhead introduced by the transmission of the
application input to DetAnom will likely be negligible com-
pared to the overhead incurred by the transmission of the
query results from the database to the application. In case,
however, of applications retrieving very small datasets and
for which the transmission overhead introduced by Det-
Anom may be too high, the simple detection mechanism
can be used at the cost, however, of a weaker detection (see
Section 6.3). The standard deviation of the last test is very
high because this is the only test application that contains
loops; therefore, depending on the input, the application
may send more queries just because iterates more on some
code block.
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Fig. 7. Network overhead.

9.1 Accuracy Limitations

Considering the query signature used and the anomaly
detection techniques implemented—described respectively
in Sections 5.1 and 6.1—we now analyze in detail what kind
of attack cannot be detected by Det Anom.

As already discussed, we expect to have false positives
only in case of incomplete profiles. Therefore, in this section
we discuss only about the false negatives, that is, anomalies
that DetAnom is unable to detect and approaches to address
these types of false negative occurrences. It is important to
notice that false negatives are due to the level of details
according to which queries are represented in the profiles.
In what follows we discuss the two limitations of the query
signatures and techniques to address these limitations.

Consider the following fragment as example of code to
attack.

1 int productivity = userInput();

> sgl = "UPDATE employee SET salary = salary
* 1.1 WHERE productivity > " +
productivity + " AND work_experience >
5";

The query signature does not contain any information
about the operators used in the WHERE clause. However
changing such operators changes the semantics of the
query. In the following example the operators “and” and
“greater than” have been replaced respectively by “or” and
“less than”, respectively.

I int productivity = userInput();

> sgl = "UPDATE employee SET salary = salary
* 1.1 WHERE productivity < " +
productivity + " OR work_experience >

5",.

Such change in the query can be easily detected by extend-
ing the signature to record the type of the operators together
with the relative occurrence of these operators within the
query. The occurrence of an operator can be determined based
on a traversal of the query parse tree. Another approach is to
include information about predicate selectivities. As well
known from the large body of research on query optimization
(see [21] for the pioneer work on query optimization), differ-
ent operators result in different query selectivities. The
selectivity of a query gives an indication of the expected cardi-
nality of a query result. For example, a query with the logical
“or” of two predicates returns more tuples than a query with
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the logical “and” of the same two predicates. Therefore, if the
expected selectivity of the query is recorded in the query sig-
nature, changes to the operators would result in a different
selectivity. As a result, an anomaly due to mismatch in query
selectivity would be detected. We have developed an initial
prototype of this technique for the case in which queries are
issued directly by users [22]. We plan to further tune this tech-
nique and integrate it into DetAnom as part of future work. We
did not include this technique in the current release of DetA-
nom to keep the system stable for release to our industry
collaborators.

The query signature does not contain any information
regarding the parameters used to compose the query.
Therefore changing a parameter generates an anomaly that
cannot be detected. In the example below a user input is
ignored and replaced by a fixed value.

I int productivity = userInput();
> productivity = 0;
sgl = "UPDATE employee SET salary =
* 1.1 WHERE productivity > " +
productivity + " AND work_experience >
5";

salary

A first line of defense against this attack is to add to the
database some triggers which check that sensitive parame-
ters are within a valid range. A second line to defense is to
extend the instrumentation to check that the user input cor-
rectly reaches the SQL connection library; however, this in
turn requires protecting the instrumentation from tamper-
ing. A third line of defense is to identify, during the profile
creation phase, relationships (such as equality or some other
mathematical relationship) between the input parameters
of the application program and the parameters passed to the
query. These relationships can be identified via some statisti-
cal analyses. At runtime, the actual values of the application
input parameters and the values of the parameters passed to
the query would be analyzed to determine whether the rela-
tionships still hold. When this is not the case, an anomaly
would be raised. We notice that these three defense techni-
ques could be all applied to provide a strong defense against
attacks that change the input parameters of queries.

Checking that user input is not arbitrarily changed is a gen-
eral problem outside the scope of this project. We plan how-
ever to investigate this issue as part of future research to also
determine available software engineering techniques that can
help with this problem when attacks are carried out by
insiders. We emphasize that insiders may have direct access
to source and binary of applications and therefore would be
able to compromise an application even when the application
does not have any vulnerability (like buffer overflow).

9.2 Technical Limitations

Our experiments have shown some technical limitations of
our current approach. In what follows we discuss such limi-
tations and outline possible solutions.

The profile creation phase is very slow. This is a limit of
the testing technique we use which actually runs the pro-
gram as many times as it is required to explore the possible
execution paths. Moreover, the concolic testing tool we
used, JCute [17], was developed to write small unit tests.
Therefore it does not implement any mechanism to speed

up the analysis of large programs. Multiple executions
could be parallelized and distributed on different machines;
moreover, saving a snapshot of the execution in order to
being able to backtrack without the need of restarting the
application from the beginning may result in a big improve-
ment of the profile creation time. The use of a concolic
engine, which supports backtracking doing snapshot of the
application execution, may also be useful in supporting
the incremental profile creation. This can be used both to
quickly deploy a partial profile to start securing the applica-
tion while building a more accurate profile, or to incremen-
tally change the profile to reflect application updates.

Our current approach to deal with application updates is
that an administrator should check if such updates change
the execution flow (with respect of the issued queries). We
expect that most of the updates will not contain substantial
changes which impact the execution flow with respect of
the queries issued; in this case there thus is no need of a
new profile. Whenever the update changes the flow in a
minor way, the profile can be manually fixed by an adminis-
trator. In case of major updates which heavily change the
execution flow, a new profile must be created from scratch.

JCute can only solve numerical constraints. Whenever
the application input is in form of strings, the solver cannot
force the execution of different branches. To solve this prob-
lem a major extension of JCute is required to add a con-
straint solver for string values.

JCute can only analyze variables when the execution flow
is inside the main code. However, whenever the execution
moves to some external library, the solver loses control of
what happens to the values and is not any longer able to
generate inputs to solve the future constraints. For example,
consider the code if (a > Math.max(b, c¢)){...} else
{...}, where all the variables provided as input to the appli-
cation are integer. The solver cannot generate values to force
both the branches because JCute has no knowledge about
what happens inside the Math.max (int, int) function.
In the case of Java libraries this problem can be easily solved
decompressing the jar file and letting JCute analyze it. But
the standard Math library is implemented mostly using
native code. A solution to this problem would be to provide
an instrumented version completely written in Java to be
used during the profile creation phase.

The Java Language Specification states some constraints
that the code must fulfill [23], and some of them are related
to the maximum size of classes and methods. JCute injects
at runtime some code to follow the execution flow and cor-
rectly analyze the branches. Therefore, if a class is already
close to the limits, with the injected code it may exceed these
limits resulting in an invalid bytecode that cannot be exe-
cuted and, consequently, analyzed. Luckily these limits are
very high and very difficult to be reached, especially if the
code is written following good coding style techniques.

10 RELATED WORK

A formal framework to categorize anomaly detection sys-
tems has been proposed by Shu et al. [24]. According to this
classification, our proposed approach uses a deterministic
language defined on the top of the database interactions to
perform the detection.
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Several approaches have been proposed to protect data-
bases against malicious application programs. DIDAFIT [25]
is an intrusion detection system that works at the application
level. Like our system, DIDAFIT works in two phases: train-
ing phase and detection phase. During the training phase,
database logs are analyzed to generate fingerprints of the
queries found in the log. Fingerprints are regular expressions
of queries with constants in the WHERE clause replaced by
place-holders that reflect the data types of the constants. Dur-
ing the detection phase, input queries are checked against
such fingerprints. Queries that match some expression in the
profiles are considered benign, and anomalous otherwise.
DIDAFIT has however some major drawbacks. First, the sys-
tem relies only on logs to create program profiles. There is
therefore no guarantee that the log would contain all legiti-
mate queries. To address this drawback, the authors propose
a technique to generate new signatures from other signatures
that are similar in all portions and have some predicates in
common. While this solution works in some cases, the sys-
tem would not be able to recognize queries that do not
appear in the log. Another problem is that DIDAFIT does not
take into account the control flow and data flow of the pro-
gram, i.e., the algorithm neither checks the correct order of
the queries, nor the constraints that have to be verified for a
query to be executed. The approaches proposed by Bertino
et al. [26] and Valeur et al. [27] also analyze training logs for
creating profiles of queries. Therefore they have the same
drawbacks mentioned earlier. These approaches focus on
the detection of web-based attacks, like SQL Injection and
Cross-Site Scripting (XSS) attacks, and fail to detect other
attacks performed through application programs, e.g., code
modification attacks.

Securing a database can be a difficult task, Paleari
et al. [28] described a new category of attacks which rely on
race conditions. Such kind of attacks are easier in web appli-
cations, where the tools used (mostly PHP and MySQL)
offer a poor set of synchronization primitives but provide a
highly parallel environment. Therefore, when multiple
simultaneously requests are executed, it is possible to inter-
leave the SQL queries in a way that generates unexpected
behavior. Such a kind of attack may be mitigated by an
approach, like the one we propose in this paper, which can
enforce the correct order of the queries.

Our previous poster paper [29] outlines some prelimi-
nary ideas to protect against data exfiltration through mali-
cious modification of the application program. However,
the approach proposed in this paper reduces the perfor-
mance overhead by allowing the ADE to simply traverse
the application profile instead of concretizing of the symbolic
execution tree of the application program. Such concretiza-
tion in the detection engine results in extra delay when veri-
fying a query. In addition, our preliminary approach does
not cover the combination of testing-based techniques with
program analysis techniques nor cover implementation and
assessment of the proposed approach.

The current paper is an extended version of a conference
paper [30]. Compared with this previous paper, the current
paper has the following novel contributions. We have cre-
ated a stronger architecture which can easily support differ-
ent target databases. We have adopted the approach of
instrumenting the environment of the application instead of

the application itself, with the benefits described in Section
7.4. We extended the profile signature to represent sub-
queries. We proposed a simpler version of the anomaly
detection which does not require receiving the application
input and thus does not require instrumenting the environ-
ment nor the application. Such simple version can be used in
environments where deploying a new instrumented applica-
tion is difficult or impossible, and we argued that it still gives
a reasonable level of safety against different kinds of attacks
(see Section 6.3). We introduced the important notion of con-
fidence for the profiles which let us decide whether to issue
alerts or warnings according to the confidence obtained
during the profile creation phase. This last extension removes
the difference between flexible and strict policy previously
introduced to deal with incomplete profiles. Our previous
approach was based on the idea that, after the profile crea-
tion, an administrator had to check the code coverage as
reported by jCute and decide whether to use the strict or the
flexible policy. If the flexible policy were chosen, the admin-
istrator had to also choose a number of “safe” anomalies
with the idea that, if an anomalous query had been issued a
number of times greater than a given threshold, a stronger
alert had to be raised asking the administrator to revise the
profile. But, considering that in high security environments,
even one anomaly can be a problem, the flexible policy
would not be adequate. By contrast, the current approach
based on the confidence degree, allows us to explicitly mark
the portion of profiles from where we expect unseen code to
be executed, thus clearly differentiating anomalies and
warnings also in very poor coverage profiles and without
requiring any administrator decision. We performed a new
set of experiments to evaluate the network usage overhead.
Finally we have discussed in details the limitations we have
identified in the use of jCute and outlined approaches to
address such limitations.

Programs profiling techniques have also been proposed
for many other purposes, such as debugging and collecting
usage statistics [31], monitoring system calls [32], [33], [34],
and enhancing the performance of database applications.
For example, the Pyxis system [35] uses static analysis of
application code to partition the code into two pieces: one to
be executed on the application server and the other on the
database server, trying to reduce the control transfers and
amount of exchanged data between the two components.

Dasgupta et al. [36] propose a static analysis for database
applications that use ADO.net APIs in order to extract fea-
tures of SQL queries, query parameters, and usage of query
results in order to detect SQL injection attacks and potential
data integrity violations. Ramachandra and Sudarshan have
developed DBridge [37], a tool that optimizes the perfor-
mance of database applications by prefetching query
results. Control-flow and data-flow analysis are used to find
locations in the program where instrumented code can be
added; at program runtime this code sends requests to the
database to prepare results of queries predicted to be issued
by the program at later points.

Many other approaches have been proposed to detect
abnormal execution behavior. Xu et al. [38] propose a tool
which can detect an abnormal control flow with respect to
system and library calls. They use static analysis combined
together with a probabilistic model to evaluate the
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likelihood that a sequence of calls has been issued by a com-
promised program. Shu at al. [39] argue that a new category
of control flow attacks exists, namely aberrant path attacks,
that are difficult to detect because they do not directly
change the flow of the execution, but change some data
which is used by the program itself to decide the execution
flow. Such kind of attacks can generate montage anomalies,
when we can observe multiple legitimate control flows that
are incompatible in a single execution, or frequency anoma-
lies, that is, a legitimate code block that is called too fre-
quently. They argue also that usually such attacks happen in
a large-scale execution window, being unseen by classical
detection techniques that, for performance reason, can ana-
lyze only a small portion of the execution window. They
propose a probabilistic method that does not suffer of com-
binatorial explosion and can scale to analyze the flow on
larger execution windows. It is important to notice that, in
proposing our anomaly detection technique, we considered
a totally different scenario. Approaches, like the one by Shu
etal. [39] aim at protecting the user against exploited or com-
promised applications. In our scenario we aim at protecting
the database also against users who may intentionally alter
applications and/or disable locally installed security tools in
order to steal or alter data stored in the DBMS.

Finally, we would like to point out that security must be
approached by combining different techniques, each protect-
ing against specific types of attack, and that a comprehensive
intrusion detection system should aggregate multiple warn-
ings from different sources. In this respect, our anomaly
detection system would be one of such warning sources.
Vigna et al. [40], for example, have shown that it is possible
to significantly increase the detection accuracy by combining
a web-based and a database anomaly detection system. The
idea of our approach is to provide another warning source
and anomaly detection tool, that can be used together with
existing tools to increase the overall protection.

11 CONCLUSION AND FUTURE WORK

Though access control mechanisms deployed in DBMS are
able to prevent application programs from accessing the
data for which they are not authorized, they are unable to
prevent data misuse caused by authorized application pro-
grams. In this paper, we have proposed an anomaly detec-
tion mechanism that is able to identify anomalous queries
resulting from previously authorized applications. Our
mechanism builds close to accurate profile of the applica-
tion program, without the need of its source code, and at
runtime checks incoming queries against that profile.

In addition to anomaly detection, our DetAnom mecha-
nism is capable of detecting any injections or modifications
to the SQL queries. We want to emphasize two benefits
of our approach compared to other more conventional tech-
niques. The first is that by using the concolic testing tech-
nique instead of static analysis techniques, we can profile
the actual execution of the code which includes queries exe-
cuted by self-modifying or dynamically downloaded code.
The second is that we are able to enforce the actual order of
the queries sent to the database, unlike conventional SQL
injection detection approaches which are unable to deter-
mine whether a query is added or removed from an applica-
tion program.

We have implemented DetAnom with JCute and Post-
greSQL which results in low runtime overhead and high
accuracy in detecting anomalous database accesses.

We are currently extending our work along several direc-
tions. Our current implementation of DetAnom exploits the
constraints that JCute [17] supports, i.e., arithmetic, pointer,
and thread constraints. We plan to improve our signature
generation scheme by incorporating information about pro-
gram constants, variables, logical and relational operators
used in the WHERE clause of a query as this information may
enhance the accuracy of detection. We also plan to enhance
the completeness and accuracy of our profile creation mech-
anism using both static and dynamic analysis of the pro-
gram. In this approach, we will first analyze the program
statically to find all the execution paths that contain SQL
queries and then guide the concolic execution dynamically
so that it does not leave any paths unexplored.
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